Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1)\) Ta có :
\(\left|2x-1\right|\ge0\)
\(\Leftrightarrow\)\(A=\left|2x-1\right|+8\ge8\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|2x-1\right|=0\)
\(\Leftrightarrow\)\(2x-1=0\)
\(\Leftrightarrow\)\(2x=1\)
\(\Leftrightarrow\)\(x=\frac{1}{2}\)
Vậy GTNN của \(A\) là \(8\) khi \(x=\frac{1}{2}\)
Chúc bạn học tốt ~
\(2)\) Ta có :
\(B=\left|x-3\right|+\left|x-9\right|-1\)
\(B=\left|x-3\right|+\left|9-x\right|-1\ge\left|x-3+9-x\right|-1=\left|6\right|-1=6-1=5\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x-3\right)\left(9-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x-3\ge0\\9-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le9\end{cases}\Leftrightarrow}3\le x\le9}\)
Trường hợp 2 :
\(\hept{\begin{cases}x-3\le0\\9-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le3\\x\ge9\end{cases}}}\) ( loại )
Vậy GTNN của \(B\) là \(5\) khi \(3\le x\le9\)
Chúc bạn học tốt ~
1.
A = | x | + 3
vì | x | \(\ge\)0 nên | x | + 3 \(\ge\)3
\(\Rightarrow\)GTNN của A = 3 khi | x | = 0 hay x = 0
tương tự
2.
M = 5 - | x |
vì | x | \(\ge\)0 nên 5 - | x | \(\le\)5
\(\Rightarrow\)GTLN của M = 5 khi | x | = 0 hay x = 0
\(A=\left|3x-4\right|-1\)
có :
\(\left|3x-4\right|\ge0\)
\(\Rightarrow\left|3x-4\right|-1\ge0+1\)
\(\Rightarrow\left|3x-4\right|-1\ge-1\)
dấu "=" xảy ra khi |3x - 4| = 0
=> 3x - 4 = 0
=> 3x = 4
=> x = 4/3
1,
Ta có: \(|3x-4|\ge0\forall x\)
\(\Rightarrow|3x-4|-1\ge0-1\)
\(\Rightarrow A\ge-1\)
\(\Rightarrow GTNN\)của A=-1
\(\Leftrightarrow|3x-4|=0\)
\(\Leftrightarrow3x-4=0\)
\(\Leftrightarrow3x=4\)
\(\Leftrightarrow x=\frac{4}{3}\)
Vậy \(x=\frac{4}{3}\)thì GTNN của A=-1
2,
Ta có: \(|x+10|\ge0\forall x\)
\(\Leftrightarrow|x+10|-2\ge0-2\)
\(\Leftrightarrow B\ge-2\)
\(\Leftrightarrow GTNN\)của B=-2
GTNN của B=-2
\(\Leftrightarrow|x+10|=0\)
\(\Leftrightarrow x+10=0\)
\(\Leftrightarrow x=-10\)
Vậy x=-10 thì GTNN của B=-2
a,Ta có:\(A=\left|x-3\right|+x=\left|3-x\right|+x\ge3-x+x=3\)
\(\Rightarrow\)GTNN của A là 3 đạt được khi \(3-x\ge0\Rightarrow3\ge x\)
b,\(B=\left|3-x\right|-x+2=\left|x-3\right|-x+2\ge x-3-x+2=-1\)
\(\Rightarrow\)GTNN của B là -1 đạt được khi \(x-3\ge0\Rightarrow x\ge3\)
c,\(C=\left|3-x\right|+\left|x\right|\ge\left|3-x+x\right|=\left|3\right|=3\)
\(\Rightarrow\)GTNN của C là 3 đạt được khi \(\orbr{\begin{cases}3-x\ge x\ge0\\3-x\le x\le0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}3\ge2x\ge0\\3\le2x\le0\left(vôlý\right)\end{cases}}\)\(\Rightarrow\frac{3}{2}\ge x\ge0\)
ta có:|a|+|b|\(\ge\)|a+b|
áp dụng ta đc
|1-x|+|x-2|\(\ge\)|1-x+x-2|=1
dấu "=" xảy ra khi(1-x)(x-2)\(\ge\)0
tổng trên = x+1+x+2=(x+x)+(1+2)=2x+3
để 2x+3 có giá trị nhỏ nhất mà 2x+3 là dương suy ra x bé nhất >-1 suy ra x=0
suy ra 2x+3=2.0+3=3
Vậy giá trị nhỏ nhất là 3