K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2021

mọi người ơi giúp mình trả lồi câu hỏi này vớiiiiiiiiiiii

15 tháng 8 2019

\(A=x^2-20x+101\)

\(A=x^2-2\cdot x\cdot10+100+1\)

\(A=\left(x-10\right)^2+1\ge1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=10\)

___

\(B=4a^2+4a+2\)

\(B=4a^2+4a+1+1\)

\(B=\left(2a+1\right)^2+1\ge1\forall a\)

Dấu "=" xảy ra \(\Leftrightarrow a=\frac{-1}{2}\)

___

\(C=x^2-4xy+5y^2+10x-22y+28\)

\(C=x^2-4xy+4y^2+y^2+10x-22y+28\)

\(C=\left(x-2y\right)^2+2\cdot\left(x-2y\right)\cdot5+25+y^2-2y+1+2\)

\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)

___

\(D=4x-x^2+3\)

\(D=-\left(x^2-4x-3\right)\)

\(D=-\left(x^2-4x+4-7\right)\)

\(D=-\left[\left(x-2\right)^2-7\right]\)

\(D=7-\left(x-2\right)^2\le7\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=2\)

___

\(E=x-x^2\)

\(E=-\left(x^2-x\right)\)

\(E=-\left(x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\right)\)

\(E=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)

\(E=\frac{1}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{1}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2}\)

a, \(A=x^2-20x+101=x^2-2.x.10+10^2+1\)

\(=\left(x-10\right)^2+1\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-10\right)^2=0\)

\(\Leftrightarrow x-10=0\)

\(\Leftrightarrow x=10\)

Vậy : \(A_{min}=1\Leftrightarrow x=10\)

b) \(B=4a^2+4a+2=\left(2a\right)^2+2.2a.1+1^2+1\)

\(=\left(2a+1\right)^2+1\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow\left(2a+1\right)^2=0\)

\(\Leftrightarrow2a+1=0\)

\(\Leftrightarrow2a=-1\)

\(\Leftrightarrow a=-\frac{1}{2}\)

Vậy : \(B_{min}=1\Leftrightarrow x=-\frac{1}{2}\)

27 tháng 7 2021

1, \(4x^2-4x+3=\left(2x-1\right)^2+2\ge2\)

Dấu ''='' xảy ra khi x = 1/2

Vậy GTNN biểu thức trên là 2 khi x = 1/2 

2, \(-x^2+10x-30=-\left(x^2-10x+25+5\right)=-\left(x-5\right)^2-5\le-5\)

Dấu ''='' xảy ra khi x = 5 

Vậy GTLN biểu thức trên là -5 khi x = 5

3, \(x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu ''='' xayr ra khi x = 1/2 

Vậy GTNN biểu thức là 3/4 khi x = 1/2 

4, \(25x^2+10x=25x^2+10x+1-1=\left(5x+1\right)^2-1\ge-1\)

Dấu ''='' xảy ra khi x = -1/5

Vậy GTNN biểu thức trên là -1 khi x = -1/5

6, \(-x^2+8x+5=-\left(x^2-8x-5\right)=-\left(x^2-8x+16-21\right)\)

\(=-\left(x-4\right)^2+21\le21\)

Dấu ''='' xảy ra khi x = 4

Vậy GTLN biểu thức trên là 21 khi x = 4

27 tháng 7 2021

Trả lời:

1, \(4x^2-4x+3=4x^2-4x+1+2=\left(2x-1\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra khi 2x - 1 = 0 <=> x = 1/2

Vậy GTNN của bt = 2 khi x = 1/2

2, \(-x^2+10x-30=-\left(x^2-10x+30\right)=-\left(x^2-10x+25+5\right)=-\left[\left(x-5\right)^2+5\right]\)

\(=-\left(x-5\right)^2-5\le-5\forall x\)

Dấu "=" xảy ra khi x - 5 = 0 <=> x = 5

Vậy GTLN của bt = - 5 khi x = 5

3, \(25x^2+10x=25x^2+10x+1-1=\left(5x+1\right)^2-1\ge-1\forall x\)

Dấu "=" xảy ra khi 5x + 1 = 0 <=> x = - 1/5 

Vậy GTNN của bt = - 1 khi x = - 1/5

4, \(x^2-x+1=x^2-2x\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Dấu "=" xảy ra khi x - 1/2 = 0 <=> x = 1/2

Vậy GTNN của bt = 3/4 khi x = 1/2

5, \(8x-x^2+5=-\left(x^2-8x-5\right)=-\left(x^2-8x+16-21\right)=-\left[\left(x-4\right)^2-21\right]\)

\(=-\left(x-4\right)^2+21\le21\forall x\)

Dấu "=" xảy ra khi x - 4 = 0 <=> x = 4

Vậy GTLN của bt = 21 khi x = 4

13 tháng 7 2021

a) B = x - x2 + 2

\(-\left(x^2-x+\frac{1}{4}-\frac{1}{4}-2\right)=-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)

=> Max B = 9/4 

Dấu "=" xảy ra <=> x - 1/2 = 0 <=> x = 1/2

Vậy Max B = 9/4 <=> x = 1/2

d) Ta có P = \(x-x^2-1=-\left(x^2-x+\frac{1}{4}-\frac{1}{4}+1\right)=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}\)

=> Max P = -3/4 

Dấu "=" xảy ra <=> x -1/2 = 0 <=> x = 1/2

Vậy Max P = -3/4 <=> x = 1/2 

13 tháng 7 2021

uk bn eeeeeee

13 tháng 7 2021

bài vách ngọc ngà và bài cà phê ko đường

\(a)\)

\(21\left(x+3\right)^3:\left(3x+9\right)^2\)

\(=[21\left(x+3\right)^3]:[3^2\left(x+3\right)^2]\)

\(=7\left(x+3\right):3\)

Thay vào ta được: \(7.\frac{\left(-6+3\right)}{3}=7.\left(-3\right):3=-7\)

\(b)\)

Thay vào ta được:

\(\left(2.2^2-5.2+3\right)^4:[\left(2.2-3\right)^3:\left(2-1\right)^2]\)

\(=\left(2.4-10+3\right)^4:[\left(4-3\right)^31^2]\)

\(=1^4:\left(1^3.1\right)\)

\(=1:1\)

\(=1\)

\(c)\)

Thay vào ta được:

\(36.10^4.7^3:\left(-6.10^3.7^2\right)\)

\(=-6.10.7\)

\(=-420\)