Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(A=\frac{2x^2+3x+3}{2x+1}\)nguyên thì :
\(\left(2x^2+3x+3\right)⋮\left(2x+1\right)\)
\(\left(2x^2+x+2x+1+2\right)⋮\left(2x+1\right)\)
\(\left[x\left(2x+1\right)+\left(2x+1\right)+2\right]⋮\left(2x+1\right)\)
\(\left[\left(2x+1\right)\left(x+1\right)+2\right]⋮\left(2x+1\right)\)
Vì \(\left(2x+1\right)\left(x+1\right)⋮\left(2x+1\right)\)
\(\Rightarrow2⋮\left(2x+1\right)\)
\(\Rightarrow2x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Rightarrow x\in\left\{0;-1;0,5;-1,5\right\}\)
Vậy....
ko có 2x2 đâu mik thấy đề bài nó ghi như thế. bn giúp mik nhé!
Tính diện tích xung quanh và diện tích toàn phần của hình hộp chữ nhật có đáy là 3×4,chiều cao là 6
Bài 1:
a: \(M=x^2-10x+3\)
\(=x^2-10x+25-22\)
\(=\left(x^2-10x+25\right)-22\)
\(=\left(x-5\right)^2-22>=-22\forall x\)
Dấu '=' xảy ra khi x-5=0
=>x=5
b: \(N=x^2-x+2\)
\(=x^2-x+\dfrac{1}{4}+\dfrac{7}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi x-1/2=0
=>x=1/2
c: \(P=3x^2-12x\)
\(=3\left(x^2-4x\right)\)
\(=3\left(x^2-4x+4-4\right)\)
\(=3\left(x-2\right)^2-12>=-12\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
\(A=2x^2+5y^2-2xy+2y+2x\)
\(2A=4x^2+10y^2-4xy+4y+4x\)
\(2A=\left(4x^2-4xy+y^2\right)+9y^2+4y+4x\)
\(2A=\left[\left(2x-y\right)^2+2\left(2x-y\right)+1\right]+\left(9y^2+6y+1\right)-2\)
\(2A=\left(2x-y+1\right)^2+\left(3y+1\right)^2-2\)
Do \(\left(2x-y+1\right)^2\ge0\)
\(\left(3y+1\right)^2\ge0\)
\(\Rightarrow2A\ge-2\)
\(\Leftrightarrow A\ge-1\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}2x-y+1=0\\3y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-2}{3}\\y=\frac{-1}{3}\end{cases}}\)
Vậy ...
\(A=x^2-2xy+y^2+x^2+2x+1+y^2+2y+1+3y^2-2\)
\(A=\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2+3y^2-2\)
\(Do\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2+3y^2>=0\)
\(nenA>=-2\)
vậy gtnn của A là -2
(5x+1)(5x−1)−25(x+3)(x−1)=4(5x+1)(5x−1)−25(x+3)(x−1)=4
⇔25x2−1−25x2−50x+75=4⇔25x2−1−25x2−50x+75=4
⇔−50x+70=0⇔−50x+70=0
⇔x=7050⇔x=7050
Vậy B=7050
B=3x2-5x= 3(x2-\(\frac{3}{5}\)x)
=3 (x2-2.\(\frac{3}{10}\)x+\(\frac{9}{100}\)-\(\frac{9}{100}\))
=3(x-\(\frac{3}{10}\))2-\(\frac{27}{100}\)\(\ge\)-\(\frac{27}{100}\)
Vậy Bmin =-\(\frac{27}{100}\)<=> x=\(\frac{3}{10}\)