\(A=Ix-\frac{3}{4}I\)

\(B=Ix+\frac...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2016

a) Ta có: \(\left|2x-\frac{1}{3}\right|\ge0\)

\(\Rightarrow A=\left|2x-\frac{1}{3}\right|+107\ge107\)

\(\Rightarrow\)Dấu " =" xảy ra khi \(\left|2x-\frac{1}{3}\right|=0\)

                       \(\Rightarrow2x-\frac{1}{3}=0\)

                        \(\Rightarrow2x=\frac{1}{3}\)

                          \(\Rightarrow x=\frac{1}{6}\)

Vậy A đạt GTNN = 107 khi x = \(\frac{1}{6}\)

b) Ta có: \(\left|x+\frac{3}{5}\right|\ge0\)

\(\Rightarrow B=\left|x+\frac{3}{5}\right|-\frac{1}{2}\ge\frac{-1}{2}\)

=> Dấu" = " xảy ra khi \(\left|x+\frac{3}{5}\right|=0\)

                     \(\Rightarrow x+\frac{3}{5}=0\)

                     \(\Rightarrow x=\frac{-3}{5}\)

Vậy B đạt GTNN = \(\frac{-1}{2}\) Khi x = \(\frac{-3}{5}\)

18 tháng 9 2017

dell biết\

9 tháng 9 2018

a) \(|x+4|=\frac{7}{3}\) \(\Rightarrow x+4=\pm\left(\frac{7}{3}\right)\)

TH1: \(x+4=\frac{7}{3}\)                                   

\(x=\frac{7}{3}-4=-\frac{5}{3}\)

TH2: \(x+4=-\frac{7}{3}\)

\(x=-\frac{7}{3}-4=-\frac{19}{3}\)

20 tháng 9 2015

\(\left|x-y\right|+\left|y+\frac{5}{17}\right|=0\)

\(\Leftrightarrow\left|x-y\right|=\left|y+\frac{5}{17}\right|=0\)

\(\Leftrightarrow x=y=-\frac{5}{17}\)

3 tháng 8 2017

a) với x>1/2   => bt=x-1/2+3/4-x=...

với x<1/2 => bt=1/2-x+3/4-x=...

b)tự làm nha cưng

14 tháng 8 2020

a) \(A=\left|x+\frac{2}{3}\right|\ge0\)

Min A = 0 \(\Leftrightarrow x=\frac{-2}{3}\)

b) \(B=\left|x\right|+\frac{2}{3}\ge\frac{2}{3}\)

Min \(B=\frac{2}{3}\)\(\Leftrightarrow x=0\)

c) \(C=\left|x-\frac{1}{2}\right|+\left|y\right|+3\ge3\)

Min C = 3 \(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=0\end{cases}}\)

d) \(F=\left|x-5\right|+\left|x+4\right|\ge\left|5-x+x+4\right|=\left|9\right|=9\)

Min F = 9 

\(\Leftrightarrow x\ge5\)

14 tháng 8 2020

Ta có : \(A=\left|x+\frac{2}{3}\right|\ge0\forall x\)

Dấu "=" xảy ra <=> x + 2/3 = 0 => x = -2/3

Vậy GTNN của A là 0 khi x = -2/3

b) Vì \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+\frac{1}{3}\ge\frac{1}{3}\forall x\)

Dấu "=" xảy ra <=> x = 0

Vậy GTNN của B là 1/3 khi x = 0

c) \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\forall x\\\left|y\right|\ge0\forall y\end{cases}}\Rightarrow\left|x-\frac{1}{2}\right|+\left|y\right|+3\ge3\forall x;y\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=0\end{cases}}\)

Vậy GTNN của C là 3 <=> x = 1/2 ; y = 0

d) Ta có F = |x - 5| + |x + 4| = |5 - x| + |x + 4| \(\ge\)|5 - x + x + 4| = |9| = 9

Dấu "=" xảy ra <=>\(\left(5-x\right)\left(x+4\right)\ge0\)

TH1 : \(\hept{\begin{cases}5-x\le0\\x+4\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge5\\x\le-4\end{cases}}\left(\text{loại}\right)\)

TH2 : \(\hept{\begin{cases}5-x\ge0\\x+4\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\le5\\x\ge-4\end{cases}}\Rightarrow-4\le x\le5\left(tm\right)\)

Vậy GTNN của F là 9 khi \(-4\le x\le5\)

13 tháng 7 2019

a) \(\left|2y-3\right|-\frac{1}{7}=\frac{3}{4}\)

=> \(\left|2y-3\right|=\frac{3}{4}+\frac{1}{7}\)

=> \(\left|2y-3\right|=\frac{25}{28}\)

=> \(\orbr{\begin{cases}2y-3=\frac{25}{28}\\2y-3=-\frac{25}{28}\end{cases}}\)

=> \(\orbr{\begin{cases}2y=\frac{109}{28}\\2y=\frac{59}{28}\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{109}{56}\\x=\frac{59}{56}\end{cases}}\)

Tính GTLN

a) Ta có: -|2x - 5| \(\le\)\(\forall\)x

=> -|2x - 5| + 32 \(\le\)32 \(\forall\)x

Hay A \(\le\)32 \(\forall\)x

Dấu "=" xảy ra khi : 2x - 5 = 0 <=> 2x = 5 <=> x = 5/2

Vậy Max của A = 32 tại x = 5/2

13 tháng 7 2019

\(C=\left|y^2+1\right|+2020\)

Ta có: \(y^2\ge0\Leftrightarrow y^2+1\ge1\Leftrightarrow\left|y^2+1\right|\ge1\)

\(\Leftrightarrow C=\left|y^2+1\right|+2020\ge2021\)

Vậy \(C_{min}=2021\)

(Dấu "="\(\Leftrightarrow y^2+1=1\Leftrightarrow y^2=0\Leftrightarrow y=0\))