\(-\) \(|x+\frac{2}{5}|\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2017

a, Gọi A = \(\frac{4a+2b-c}{a-b-c}\)

Đặt \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=k\Rightarrow\hept{\begin{cases}a=2k\\b=5k\\c=7k\end{cases}}\)

=>A = \(\frac{4a+2b-c}{a-b-c}=\frac{8k+10k-7k}{2k-5k-7k}=\frac{11k}{-10k}=\frac{-11}{10}\)

b, Ta có: \(\hept{\begin{cases}x^2\ge0\\\left|y-3\right|\ge0\end{cases}\forall x,y\Rightarrow A=x^2+\left|y-3\right|+5}\ge5\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x^2=0\\\left|y-3\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=3\end{cases}}}\)

Vậy MinA = 5 khi x = 0 và y = 3

c, xy + 3x - y = 6

<=> xy + 3x - y - 3 = 3

<=> x(y + 3) - (y + 3) = 3

<=> (x - 1)(y + 3) = 3

=> x - 1 và y + 3 thuộc Ư(3) = {1;-1;3;-3}

Ta có bảng:

x-11-13-3
y+33-31-1
x204-2
y0-6-2-4

Vậy các cặp (x;y) là (2;0) ; (0;-6) ; (4;-2) ; (-2;-4)

7 tháng 11 2017

a, Gọi A = 4a+2b−ca−b−c 

Đặt a2 =b5 =c7 =k⇒{

a=2k
b=5k
c=7k

=>A = 4a+2b−ca−b−c =8k+10k−7k2k−5k−7k =11k−10k =−1110 

b, Ta có: {

x2≥0
|y−3|≥0
 

∀x,y⇒A=x2+|y−3|+5≥5

Dấu "=" xảy ra khi {

x2=0
|y−3|=0

⇒{

x=0
y=3

Vậy MinA = 5 khi x = 0 và y = 3

c, xy + 3x - y = 6

<=> xy + 3x - y - 3 = 3

<=> x(y + 3) - (y + 3) = 3

<=> (x - 1)(y + 3) = 3

=> x - 1 và y + 3 thuộc Ư(3) = {1;-1;3;-3}

Ta có bảng:

x-11-13-3
y+33-31-1
x204-2
y0-6-2-4

Vậy các cặp (x;y) là (2;0) ; (0;-6) ; (4;-2) ; (-2;-4)

các bạn làm hết giùm mk nhá.Nhất là câu 1 và 4

ai nhanh mk k cho ha

19 tháng 12 2018

\(\left(3x-\frac{1}{2}\right)^2\ge0\Leftrightarrow A\ge-5\)

Dấu = xảy ra khi \(3x-\frac{1}{2}=0\)

\(3x=\frac{1}{2}\Rightarrow x=x=\frac{1}{6}\)

Vậy..

14 tháng 8 2020

a) \(A=\left|x+\frac{2}{3}\right|\ge0\)

Min A = 0 \(\Leftrightarrow x=\frac{-2}{3}\)

b) \(B=\left|x\right|+\frac{2}{3}\ge\frac{2}{3}\)

Min \(B=\frac{2}{3}\)\(\Leftrightarrow x=0\)

c) \(C=\left|x-\frac{1}{2}\right|+\left|y\right|+3\ge3\)

Min C = 3 \(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=0\end{cases}}\)

d) \(F=\left|x-5\right|+\left|x+4\right|\ge\left|5-x+x+4\right|=\left|9\right|=9\)

Min F = 9 

\(\Leftrightarrow x\ge5\)

14 tháng 8 2020

Ta có : \(A=\left|x+\frac{2}{3}\right|\ge0\forall x\)

Dấu "=" xảy ra <=> x + 2/3 = 0 => x = -2/3

Vậy GTNN của A là 0 khi x = -2/3

b) Vì \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+\frac{1}{3}\ge\frac{1}{3}\forall x\)

Dấu "=" xảy ra <=> x = 0

Vậy GTNN của B là 1/3 khi x = 0

c) \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\forall x\\\left|y\right|\ge0\forall y\end{cases}}\Rightarrow\left|x-\frac{1}{2}\right|+\left|y\right|+3\ge3\forall x;y\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=0\end{cases}}\)

Vậy GTNN của C là 3 <=> x = 1/2 ; y = 0

d) Ta có F = |x - 5| + |x + 4| = |5 - x| + |x + 4| \(\ge\)|5 - x + x + 4| = |9| = 9

Dấu "=" xảy ra <=>\(\left(5-x\right)\left(x+4\right)\ge0\)

TH1 : \(\hept{\begin{cases}5-x\le0\\x+4\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge5\\x\le-4\end{cases}}\left(\text{loại}\right)\)

TH2 : \(\hept{\begin{cases}5-x\ge0\\x+4\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\le5\\x\ge-4\end{cases}}\Rightarrow-4\le x\le5\left(tm\right)\)

Vậy GTNN của F là 9 khi \(-4\le x\le5\)

9 tháng 9 2018

a) \(|x+4|=\frac{7}{3}\) \(\Rightarrow x+4=\pm\left(\frac{7}{3}\right)\)

TH1: \(x+4=\frac{7}{3}\)                                   

\(x=\frac{7}{3}-4=-\frac{5}{3}\)

TH2: \(x+4=-\frac{7}{3}\)

\(x=-\frac{7}{3}-4=-\frac{19}{3}\)

28 tháng 6 2017

Sorry mink ko biet lm bài lớp 7 mink mới học có lớp 5 thôi à . Mong là sẽ có người lm đc giúp bn .

28 tháng 6 2017

Cho mình hỏi: 1), 2) thuộc bài mấy trong toán lớp 78 vậy bạn.

12 tháng 3 2019

1) \(2x=3y=5z\Leftrightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-2y}{15-2\cdot10}=\frac{x-2y}{-5}\)

*TH1: Nếu x-2y = 5

\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{5}{-5}=-1\)

\(\Rightarrow\hept{\begin{cases}x=-15\\y=-10\\z=-6\end{cases}}\)\(\Rightarrow3x-2z=3\left(-15\right)-2\cdot6=-45-12=-57\)

*TH2: Nếu x-2y = -5

\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=1\)\(\Rightarrow\hept{\begin{cases}x=15\\y=10\\z=6\end{cases}\Rightarrow3x-2z=3\cdot15-2\cdot6=45-12=33}\)

Vậy giá trị nhỏ nhất của 3x - 2z là -57.

2)\(B=\frac{x^2+15}{x^2+3}=1+\frac{12}{x^2+3}\le1+\frac{12}{3}=5\)

Dấu "=" xảy ra khi x = 0.