Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đầu tiên ta lập bẳng xét đấu ra ngoài nháp với công thức trái khác phải cùng
Xét x<1, x<3
Đổi dấu giá trị tuyệt đối thành dấu ngoặc tính, đồng thời đổi dấu
( -x+1) + ( -x + 3) = 2x -1
-x +1- x +3 = 2x -1
-x-x-2x = -1-1-3
-4x =-5
=> x =4/5( THỎA MẴN)
Chú ý phần này ta tìm x ra xong phải xem , xem x có thỏa mẵn với việc mà ta xét x không
VD trong phần này ta xét x<1 , X<3
ta tìm ra x= 4/5, thế nên 4/5<1; 4/5 <3
nên x thỏa mẵn
Xét 1<x =<3
( x-1) + ( -x -3 ) = 2 x -1
bỏ ngoặc rồi tính
Xét x>=1 ,x>= 3
=> ( x-1) + (x-3) = 2x-1
Bỏ NGoặc rồi tính
kết luận Vậy x thuộc ....
\(A=\left|x+\frac{3}{2}\right|\)
Vì \(\left|x+\frac{3}{2}\right|\ge0\)
Vậy \(GTNN_A=0\)tại \(x=\frac{-3}{2}\)
\(B=\left|x-\frac{1}{2}\right|+\frac{3}{4}\)
Vì \(\left|x-\frac{1}{2}\right|\ge0\)nên \(\left|x-\frac{1}{2}\right|+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(GTNN_B=\frac{3}{4}\)tại \(x=\frac{1}{2}\)
1) `(x-3)^4 >=0`
`2.(x-3)^4>=0`
`2.(x-3)^4-11 >=-11`
`=> A_(min)=-11 <=> x-3=0<=>x=3`
2) `|5-x|>=0`
`-|5-x|<=0`
`-3-|5-x|<=-3`
`=> B_(max)=-3 <=>x=5`.
Bài 1:
Ta có: \(\left(x-3\right)^4\ge0\forall x\)
\(\Leftrightarrow2\left(x-3\right)^4\ge0\forall x\)
\(\Leftrightarrow2\left(x-3\right)^4-11\ge-11\forall x\)
Dấu '=' xảy ra khi x=3
Vì \(\hept{\begin{cases}\left|x-5\right|\ge0\forall x\\\left|x+y+7\right|\ge0\forall x,y\end{cases}}\Rightarrow\left|x-5\right|+\left|x+y+7\right|\ge0\forall x,y\)
=> \(\left|x+5\right|+\left|x+y+7\right|+25\ge25\forall x,y\)
Dấu " = " xảy ra khi và chỉ khi \(\hept{\begin{cases}\left|x+5\right|=0\\\left|x+y+7\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\\left|-5+y+7\right|=0\end{cases}}\)
=> \(\hept{\begin{cases}x=-5\\\left|2+y\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\y=-2\end{cases}}\)
Vậy GTNN của T là 25 khi x = -5,y = -2