Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để M có giá trị nguyên thì x - 2 chia hết cho x + 3
=> (x + 3) - 5 chia hét cho x + 3
=> 5 chia hết cho x + 3
=> x + 3 thuộc Ư(5) = {-1;1;-5;5}
Ta có:
x + 3 | -5 | -1 | 1 | 5 |
x | -8 | -4 | -2 | 2 |
ta có a=3-x(1-2x)-(x-1)(x+2)=3-x+2x^2 -x^2-x+2=x^2-2x+5=(x^2 -2x+1)+4=(x-1)2+4< hoặc =4 <=>gtnn của a là 4 khi x-1=0 =>x=1
a ) \(A=\left|2x-2\right|+\left|2x-2019\right|\ge\left|2-2x+2x-2019\right|=\left|2-2019\right|=2017\)
Để A đạt GTNN là 2017 <=> \(\left(2-2x\right)\left(2x-2019\right)\ge0\Rightarrow1\le x\le\frac{2019}{2}\)
b ) \(\left|2x-4\right|-\left|6-3x\right|=-1\)
\(\Leftrightarrow2\left|x-2\right|-3\left|x-2\right|=-1\)
\(\Leftrightarrow-\left|x-2\right|=-1\)
\(\Rightarrow\left|x-2\right|=1\)
\(\Rightarrow x=1;3\)
Mà x lớn nhất => x = 3
bài 1:bạn dùng BĐT chứa dấu giá trị tđ
bài 2 làm lần lượt là ok
Bài 1:
a)|x-1/4| + |x-3/4|
Áp dụng BĐT |a|+|b|>=|a+b| ta có:
\(\left|x-\frac{1}{4}\right|+\left|x-\frac{3}{4}\right|\ge\left|x-\frac{1}{4}+\frac{3}{4}-x\right|=\frac{1}{2}\)
\(\Rightarrow A\ge\frac{1}{2}\)
Dấu "=" <=>x=1/4 hoặc 3/4
Vậy Amin=1/2 <=>x=1/4 hoặc 3/4
b)|x-1|+|x-2|+|x-5|
Bạn xét từng TH ra
Bài 2:
bn tự lm nhé bài này dễ ẹc mà
ta có (x+\(\frac{2}{3}\))\(^2\) ≥ 0 ∀ x
=> MinA= \(\frac{1}{2}\)↔\(\left(x+\frac{2}{3}\right)^2\)=0 ⇒x+\(\frac{2}{3}\)=0⇒ x=\(\frac{-2}{3}\)
x\(x^2-3x-1>=-\frac{13}{4}\)