Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\sqrt{\left(x+2\right)^2}+\sqrt{\left(2-x\right)^2}=\left|x+2\right|+\left|2-x\right|\)
\(\Rightarrow P\ge\left|x+2+2-x\right|=4\)
\(\Rightarrow P_{min}=4\) khi \(\left(x+2\right)\left(2-x\right)\ge0\Rightarrow-2\le x\le2\)
B=\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1-3}{\sqrt{x}+1}=1-\dfrac{3}{\sqrt{x}+1}\)
Ta có \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+1\ge1\Leftrightarrow\dfrac{3}{\sqrt{x}+1}\le3\Leftrightarrow-\dfrac{3}{\sqrt{x}+1}\ge-3\Leftrightarrow1-\dfrac{3}{\sqrt{x}+1}\ge-2\Leftrightarrow B\ge-2\)
Dấu '=' xảy ra khi x=0
Vậy giá trị nhỏ nhất của B là -2
\(P=\frac{x+3\sqrt{x}+2}{x}\)
ĐKXĐ : x > 0
\(\Rightarrow P=1+\frac{3}{\sqrt{x}}+\frac{2}{x}\)
Đặt \(\frac{1}{\sqrt{x}}=t\)
\(\Leftrightarrow P=2t^2+3t+1\)
\(\Leftrightarrow P=2\left(t^2+2.t.\frac{3}{4}+\frac{9}{16}-\frac{1}{16}\right)=2\left(t+\frac{3}{4}\right)^2-\frac{1}{8}\)
\(\Leftrightarrow P=2\left(t+\frac{3}{4}\right)^2+\frac{-1}{8}\)
Có \(2\left(t+\frac{3}{4}\right)^2\ge0\)
\(\Rightarrow P\ge-\frac{1}{8}\)
Vậy MIn P = -1/8 <=> t = -3/4
\(\sqrt{-x^2+2x+4}=\sqrt{5-\left(x-1\right)^2}\le\sqrt{5}\)
dấu bằng khi x=1
\(P=x-2\sqrt{x-2}+3\)
\(=x-2-2\sqrt{x-2}+1+\text{4}\)
\(=\left(\sqrt{x-2}-1\right)^2+4\ge4\)
P=(x-2)-2\(\sqrt{x-2}+1+1+3\)
= (\(\sqrt{x-2}-1\))2+4\(\ge\)4
=> Pmin=4
\(\frac{3}{2+\sqrt{-x^2+2x+7}}\)=\(\frac{3}{2+\sqrt{8-\left(x-1\right)^2}}\)\(\le\)\(\frac{3}{2+\sqrt{8}}\)
dấu bằng khi x=1
Ta có : \(x-2\sqrt{x+2}\) (ĐKXĐ :\(x\ge-2\)
= \(x+2-2\sqrt{x+2}+1-3\)
= \(\left(\sqrt{x+2}-1\right)^2-3\) \(\ge-3\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x+2}-1=0\Leftrightarrow x=-1\) ( Thỏa mãn ĐKXĐ )
Vậy GTNN của \(x-2\sqrt{x+2}\) bằng -3 \(\Leftrightarrow x=-1\)