K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2015

A(x) = -3. (x2 - \(\frac{5}{3}\)x - \(\frac{1}{3}\)) = - 3. [(x- 2.x. \(\frac{5}{6}\) + \(\frac{25}{36}\)) - \(\frac{37}{36}\)]= -3. (x - \(\frac{5}{6}\))2 + \(\frac{37}{12}\) \(\le\) (-3).0 + \(\frac{37}{12}\) = \(\frac{37}{12}\) với mọi x

=> A lớn nhất = \(\frac{37}{12}\) khi x - \(\frac{5}{6}\) = 0 <=> x = \(\frac{5}{6}\)

+) Khi lấy x rất lớn thì x 2 rất lớn => -3x2 rất nhỏ và 3x2 lớn hơn 5x => -3x2 rất nhỏ và nhỏ hơn 5x 

=> A càng nhỏ khi x lấy giá trị càng lớn

=> A không tồn tại giá trị nhỏ nhất

 

 

19 tháng 8 2023

Tìm giá trị nhỏ nhất của biểu thức:

a) Ta có: 

\(M=2x^2+4x+7\)

\(M=2\cdot\left(x^2+2x+\dfrac{7}{2}\right)\)

\(M=2\cdot\left(x^2+2x+1+\dfrac{5}{2}\right)\)

\(M=2\cdot\left[\left(x+1\right)^2+2,5\right]\)

\(M=2\left(x+1\right)^2+5\)

Mà: \(2\left(x+1\right)^2\ge0\forall x\) nên:

\(M=2\left(x+1\right)^2+5\ge5\forall x\)

Dấu "=" xảy ra:

\(2\left(x+1\right)^2+5=5\Leftrightarrow2\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy: \(M_{min}=5\) khi \(x=-1\)

b) Ta có:

\(N=x^2-x+1\)

\(N=x^2-2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(N=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Mà: \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\) nên \(N=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=" xảy ra: 

\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)

Vậy: \(N_{min}=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)

19 tháng 8 2023

Tìm giá trị lớn nhất của biểu thức

a) Ta có: 

\(E=-4x^2+x-1\)

\(E=-\left(4x^2-x+1\right)\)

\(E=-\left[\left(2x\right)^2-2\cdot2x\cdot\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{15}{16}\right]\)

\(E=-\left[\left(2x-\dfrac{1}{4}\right)^2+\dfrac{15}{16}\right]\)

Mà: \(\left(2x+\dfrac{1}{4}\right)^2+\dfrac{15}{16}\ge\dfrac{15}{16}\forall x\) nên 

\(\Rightarrow E=-\left[\left(2x+\dfrac{1}{4}\right)^2+\dfrac{15}{16}\right]\le-\dfrac{15}{16}\forall x\)

Dấu "=" xảy ra:

\(-\left[\left(2x+\dfrac{1}{4}\right)^2+\dfrac{15}{16}\right]=-\dfrac{15}{16}\Leftrightarrow-\left(2x+\dfrac{1}{4}\right)^2-\dfrac{15}{16}=-\dfrac{15}{16}\)

\(\Leftrightarrow-\left(2x+\dfrac{1}{4}\right)^2=0\Leftrightarrow2x-\dfrac{1}{4}=0\Leftrightarrow x=\dfrac{1}{16}\)

Vậy: \(E_{max}=-\dfrac{15}{16}\) khi \(x=\dfrac{1}{16}\)

b) Ta có:

\(F=5x-3x^2+6\)

\(F=-3x^2+5x-6\)

\(F=-\left(3x^2-5x-6\right)\)

\(F=-3\left(x^2-\dfrac{5}{3}x-2\right)\)

\(F=-3\left[\left(x-\dfrac{5}{6}\right)^2-\dfrac{97}{36}\right]\)

\(F=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{36}\)

Mà: \(-3\left(x-\dfrac{5}{6}\right)^2\le0\forall x\) nên:

\(F=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{36}\le\dfrac{97}{36}\forall x\)

Dấu "=" xảy ra:

\(-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{36}=\dfrac{97}{36}\Leftrightarrow-3\left(x-\dfrac{5}{6}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{5}{6}=0\Leftrightarrow x=\dfrac{5}{6}\)

Vậy: \(F_{max}=\dfrac{97}{36}\) khi \(x=\dfrac{5}{6}\)

19 tháng 8 2023

\(E=-4x^2+x+1\)

\(\Rightarrow E=-4\left(x^2-\dfrac{x}{4}\right)+1\)

\(\Rightarrow E=-4\left(x^2-\dfrac{x}{4}+\dfrac{1}{64}\right)+1+\dfrac{1}{16}\)

\(\Rightarrow E=-4\left(x-\dfrac{1}{8}\right)^2+\dfrac{17}{16}\)

 mà \(-4\left(x-\dfrac{1}{8}\right)^2\le0,\forall x\)

\(\Rightarrow E=-4\left(x-\dfrac{1}{8}\right)^2+\dfrac{17}{16}\le\dfrac{17}{16}\)

\(\Rightarrow GTLN\left(E\right)=\dfrac{17}{16}\left(tạix=\dfrac{1}{8}\right)\)

19 tháng 8 2023

\(F=5x-3x^2+6\)

\(\Rightarrow F=-3\left(x^2-\dfrac{5x}{3}\right)+6\)

\(\Rightarrow F=-3\left(x^2-\dfrac{5x}{3}+\dfrac{25}{36}\right)+6+\dfrac{25}{12}\)

\(\Rightarrow F=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{12}\)

mà \(-3\left(x-\dfrac{5}{6}\right)^2\le0,\forall x\)

\(\Rightarrow F=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{12}\le\dfrac{97}{12}\)

\(\Rightarrow GTLN\left(F\right)=\dfrac{97}{12}\left(tạix=\dfrac{5}{6}\right)\)

13 tháng 7 2021

cau A thay = bằng cộng ạ

 

1: Ta có: \(x^2-2x-5\)

\(=x^2-2x+1-6\)

\(=\left(x-1\right)^2-6\ge-6\forall x\)

Dấu '=' xảy ra khi x=1

2: ta có: \(3x^2+5x-2\)

\(=3\left(x^2+\dfrac{5}{3}x-\dfrac{2}{3}\right)\)

\(=3\left(x^2+2\cdot x\cdot\dfrac{5}{6}+\dfrac{25}{36}-\dfrac{49}{36}\right)\)

\(=3\left(x+\dfrac{5}{6}\right)^2-\dfrac{49}{12}\ge-\dfrac{49}{12}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{5}{6}\)

18 tháng 9 2016

Mình làm phần sườn còn phần kết luận bạn tự làm

  • \(A=x^2-5x+3=\left(x-\frac{5}{2}\right)^2-\frac{13}{4}\ge-\frac{13}{4}\)
  • \(B=-x^2-x=-\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
  • \(C=2x^2+5x+7=2\left(x+\frac{5}{4}\right)^2+\frac{31}{8}\ge\frac{31}{8}\)
  • \(D=-x^2+5x+7=-\left(x-\frac{5}{2}\right)^2+\frac{53}{4}\le\frac{53}{4}\)
18 tháng 9 2016

a) \(A=x^2-5x+3\) 

\(A=x^2-5x+\frac{25}{4}-\frac{13}{4}\)

\(A=\left(x-\frac{5}{2}\right)^2-\frac{13}{4}\)

Có: \(\left(x-\frac{5}{2}\right)^2\ge0\Rightarrow\left(x-\frac{5}{2}\right)^2-\frac{13}{4}\ge-\frac{13}{4}\)

Dấu = xảy ra khi: \(\left(x-\frac{5}{2}\right)^2=0\Rightarrow x-\frac{5}{2}=0\Rightarrow x=\frac{5}{2}\)

Vậy: \(Min_A=-\frac{13}{4}\) tại \(x=\frac{5}{2}\)

b) \(B=\left(-x^2\right)-x\)

\(B=-\left(x^2+x\right)\)

Có: \(x^2\ge x\Rightarrow x^2+x\ge0\Rightarrow-\left(x^2+x\right)\le0\)

Dấu = xảy ra khi: \(-\left(x^2+x\right)=0\Rightarrow x^2+x=0\Rightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)

Vậy: \(Max_B=0\) tại \(\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)