Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x-\sqrt{x}+\dfrac{5}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+1\ge1\\ A_{min}=1\Leftrightarrow\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\)
TÌM GIÁ TRỊ LỚN NHẤT, NHỎ NHẤT CỦA CÁC BIỂU THỨC SAU ( NẾU CÓ) :
A=X−−√+1X+1
B=3(X−−√−1)+73(X−1)+7
C=4X−2−−−−−√−34X−2−3
D=−2017x√+1−2017x+1
E=x+1√x√+2x+1x+2
F=x+2x−−√−5x+2x−5
G=1x2−4x+5√
Đk: \(2\le x\le4\)
Áp dụng BĐT bunhiacopxki có:
\(P^2=\left(\sqrt{x-2}+3\sqrt{4-x}\right)^2\le\left(1+3^2\right)\left(x-2+4-x\right)\)
\(\Leftrightarrow P^2\le20\)\(\Leftrightarrow P\le2\sqrt{5}\)
Dấu "=" xảy ra khi \(\sqrt{x-2}=\dfrac{\sqrt{4-x}}{3}\) \(\Leftrightarrow x=\dfrac{11}{5}\) (tm đk)
Có \(P^2=8\left(4-x\right)+6\sqrt{\left(x-2\right)\left(4-x\right)}+2\ge2\)\(\Rightarrow P\ge\sqrt{2}\)
Dấu "=" xảy ra khi x=4 (tm)
ĐK: \(x\ge0\)
+) Với x = 0 => A = 0
+) Với x khác 0
Ta có: \(\frac{1}{A}=\frac{3}{4}\sqrt{x}-\frac{3}{4}+\frac{3}{4\sqrt{x}}=\frac{3}{4}\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)-\frac{3}{4}\ge\frac{3}{4}.2-\frac{3}{4}=\frac{3}{4}\)
=> \(A\le\frac{4}{3}\)
Dấu "=" xảy ra <=> \(\sqrt{x}=\frac{1}{\sqrt{x}}\)<=> x = 1
Vậy max A = 4/3 tại x = 1
Còn có 1 cách em quy đồng hai vế giải đenta theo A thì sẽ tìm đc cả GTNN và GTLN
`A=sqrt{x-2}+sqrt{6-x}(2<=x<=6)`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>A>=sqrt{x-2+6-x}=2`
Dấu "=" `<=>x=2` hoặc `x=6`
Áp dụng BĐT bunhia
`=>A<=sqrt{2(x-2+6-x)}=2sqrt2`
Dấu "=" `<=>x=4`
`C=sqrt{1+x}+sqrt{8-x}(-1<=x<=8)`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>A>=sqrt{1+x+8-x}=3`
Dấu "=" `<=>x=-1` hoặc `x=8`
Áp dụng BĐT bunhia
`=>A<=sqrt{2(1+x+8-x)}=3sqrt2`
Dấu "=" `<=>x=7/2`
`D=2sqrt{x+5}+sqrt{1-2x}(-5<=x<=1/2)`
`=sqrt{4x+20}+sqrt{1-2x}`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>D>=sqrt{4x+20+1-2x}=sqrt{2x+21}`
Mà `x>=-5`
`=>D>=sqrt{-10+21}=sqrt{11}`
Dấu "=" `<=>x=-5`
Chi biet phan 5 thoi @
Vi 3a=5b=12suy ra a=4 ;b=2,4 ta co p=a.b suy ra p=4×2.4=9.6 suy ra p>[=9.6 gtln=9.6
\(x-\sqrt{x}+\frac{5}{4}\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)+\frac{5}{4}\)
Ta có : \(x>0\)
\(\Leftrightarrow\sqrt{x}>0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)>0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)+\frac{5}{4}>\frac{5}{4}\)
=> Amin= \(\frac{5}{4}\)
dấu = xảy ra \(\Leftrightarrow\sqrt{x}+1=0\)
\(A=x-\sqrt{x}+\frac{5}{4}\)
\(=x-\sqrt{x}+\frac{1}{4}+1\)
\(=\left(\sqrt{x}-\frac{1}{2}\right)^2+1\ge1\)