\(^4\)+ (x-3)\(^4\)+ 6(x-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2016

a) Biến đổi vế trái ta có:

\(x^2+x\sqrt{3}+1=x^2+2\cdot x\cdot\frac{\sqrt{3}}{2}+\frac{3}{4}+\frac{1}{4}=\left(x+\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}=VP\)

Vậy đẳng thức trên được chứng minh

b) \(x^2+x\sqrt{3}+1=\left(x+\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\)

Vì: \(\left(x+\frac{\sqrt{3}}{2}\right)^2\ge0\)

=> \(\left(x+\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

Vậy GTNN của biểu thức trên là \(\frac{1}{4}\) khi \(x=-\frac{\sqrt{3}}{2}\)

13 tháng 7 2017

a,= \(\sqrt{x-4}-2=\sqrt{x}-4\)

=>\(x=2\)

vậy min b=0 <=> x=2

b =\(x-2\cdot2\sqrt{x}+4+6=\left(\sqrt{x}-2\right)^2+6\)

=>\(\left(\sqrt{x}-2\right)^2+6\ge6\)

vậy min b=6 <=> x=\(\sqrt{2}\)

\(x-2\cdot\frac{1}{2}\sqrt{x}+\frac{1}{4}-\frac{5}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{5}{4}\)

\(\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{5}{4}\ge\frac{5}{4}\)

vậy min =  \(\frac{5}{4}\Leftrightarrow x=\sqrt{\frac{1}{2}}\)

13 tháng 7 2017

các câu khác làm tương tự nhé

5 tháng 9 2017

ko biet

23 tháng 1 2018

t lắm tắt luôn nhé có nhiều  câu quá 

áp dụng bdt cô si ta có

a)  \(x+y+z+\frac{1}{xyz}\ge4\sqrt[4]{\frac{1.xyz}{xyz}}=4\)

vậy Min của T là 4 dấu = xảy ra khi x=y=z=1

b)  

áp dụng BDT cosi ta có

\(x+y+Z\ge3\sqrt[3]{xyz}\)

\(\frac{3}{xyz}+3xyz\ge2\sqrt{\frac{3.3xyz}{xyz}}=6\)

+ vế với vế ta được

\(T+3xyz\ge3\sqrt[3]{xyz}+6\)

\(T\ge3\sqrt[3]{xyz}+6-3xyz\)

có  \(xyz\le\frac{\left(x+y+Z\right)^2}{27}\Rightarrow-xyz\ge-\frac{\left(x+y+z\right)^2}{27}\) cùng dấu > thay vào được

\(T\ge3\sqrt[3]{xyz}+6-3\frac{\left(x+y+z\right)^3}{27}\)

Có \(x^2+1\ge2x\)

       \(y^2+1\ge2y\)

      \(z^2+1\ge2z\)  (cosy)

+ vế với vế ta được

\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)

\(3\ge\left(x+y+z\right)\Rightarrow-\left(x+y+z\right)\ge-3\) cùng dấu > ta thay được 

\(\Rightarrow T\ge3\sqrt[3]{xyz}+6-3\frac{\left(3\right)^3}{27}\)

\(\Rightarrow T\ge6\) dấu = xảy ra khi x=y=z=1

3) dự đoán của chúa pain x=y=z = \(\frac{1}{\sqrt{3}}\)

thử thay vào

\(\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+\frac{1}{\frac{1}{\sqrt{3}^3}}\)

số xấu lắm m tự làm đi tương tự câu 1) 2) 

23 tháng 1 2018

1)  dự đoán của chúa Pain x=y=z=1 

áp dụng BDT cô si ta có

\(x+y+z+\frac{1}{xyz}\ge4\sqrt[4]{\frac{xyz}{xyz}}=4.\)

Vậy Min là 4 dấu = xảy ra khi x=y=z=1

2  chia cả tử cả mẫu cho  \(x^2+y^2+z^2=3\) ta được

\(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}=\frac{3}{xyz}\)

thay số ta được

\(\left(x+y+z+\frac{x}{yz}+\frac{z}{xy}+\frac{y}{zx}\right)\)

áp dụng Cô si ta được

\(VT\ge6\sqrt[6]{\frac{x^2y^2z^2}{y^2z^2x^2}}=6\)

vậy Min là 6 dấu = xảy ra khi x=y=z=1

3) TƯỢNG TỰ cậu 2

chia xyz cho 2 vế 

\(x^2+y^2+z^2=1\)

ta được

\(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}=\frac{1}{xyz}\)

thay số

\(\left(x+y+z\right)+\left(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}\right)\)

áp dụng BDT cô si ta được

\(\left(\frac{x}{\frac{1}{\sqrt{3}^2}}+\frac{y}{\frac{1}{\sqrt{3}^2}}+\frac{x}{\frac{1}{\sqrt{3}^2}}\right)+\left(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}\right)\ge....\)

tự làm

16 tháng 5 2019

2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)

Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)

3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)

Dấu '=' xảy ra khi \(x=2011\)

Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)

4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)

Dấu '=' xảy ra khi \(x=\frac{1}{4}\) 

Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)

16 tháng 5 2019

Làm như thế nào ra \(\frac{x}{4x.2011}\)vậy bạn?