K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2020

Vì \(x\ge1\Rightarrow x^2\ge x\)

Từ đó: \(P\ge\frac{x}{\left(x+y\right)^2+x}+\frac{x}{z^2+x}=x\left[\frac{1}{\left(x+y\right)^2+x}+\frac{1}{z^2+x}\right]\)

\(\ge x\cdot\frac{4}{\left(x+y\right)^2+x+z^2+x}=\frac{4x}{\left(x+y\right)^2+z^2+2x}\) (Cauchy Schwarz)

Lại có: \(\left(x+y\right)^2+z^2=x^2+y^2+z^2+2xy=3\left(x+y+z\right)\)

\(\le3\sqrt{2\left[\left(x+y\right)^2+z^2\right]}\)

\(\Rightarrow\left(x+y\right)^2+z^2\le18\)

\(\Rightarrow P\ge\frac{4x}{18+2x}=2-\frac{18}{x+9}\ge2-\frac{18}{1+9}=\frac{1}{5}\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)

Vậy Min(P) = 1/5 khi x = 1 ; y = 2 ; z = 3

NV
18 tháng 10 2020

1.

\(y=\sqrt[4]{sinx}-\sqrt{cosx}\le\sqrt[4]{sinx}\le1\)

\(y_{max}=1\) khi \(\left\{{}\begin{matrix}sinx=1\\cosx=0\end{matrix}\right.\) \(\Leftrightarrow x=\frac{\pi}{2}+k2\pi\)

\(y=\sqrt[4]{sinx}-\sqrt{cosx}\ge-\sqrt{cosx}\ge-1\)

\(y_{min}=-1\) khi \(x=k2\pi\)

2.

\(y_{max}\) ko tồn tại

\(y=\frac{1}{cos^4x}+\frac{\sqrt{2}^2}{1-cos^4x}\ge\frac{\left(1+\sqrt{2}\right)^2}{cos^4x+1-cos^4x}=3+2\sqrt{2}\)

\(y_{min}=3+2\sqrt{2}\) khi \(cos^4x=\sqrt{2}-1\)

10 tháng 4 2021

HD: áp dụng BĐT Cô-si cho 3 số hạng trên, khi đó trong căn sẽ triệt tiêu các tổng  suy ra đpcm

NV
14 tháng 5 2019

Áp dụng BĐT Bunhiacôpxki:

\(1=\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2\le\left(x+y+z\right)\left(x+y+z\right)\)

\(\Rightarrow x+y+z\ge1\)

\(T=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\ge\frac{1}{2}\)

\(\Rightarrow T_{min}=\frac{1}{2}\) khi \(x=y=z=\frac{1}{3}\)

7 tháng 5 2019

Áp dụng BĐT Cô-si ta có:

\(1+x^3+y^3\ge3\sqrt[3]{1.x^3.y^3}=3xy\Rightarrow\sqrt{1+x^3+y^3}\ge\sqrt{3xy}\Rightarrow\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3xy}}{xy}\)

Tương tự:\(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3yz}}{yz};\frac{\sqrt{1+z^3+x^3}}{zx}\ge\frac{\sqrt{3zx}}{zx}\)

Công vế với vế của 3 BĐT trên ta đươc:

\(P\ge\frac{\sqrt{3xy}}{xy}+\frac{\sqrt{3yz}}{yz}+\frac{\sqrt{3zx}}{zx}=\sqrt{3}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\right)\) \(=\sqrt{3}.\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\ge3\sqrt{3}\)

Dấu '='xảy ra khi \(\hept{\begin{cases}x=y=z\\xyz=1\end{cases}\Leftrightarrow x=y=z=1}\)

Vậy \(P_{min}=3\sqrt{3}\)khi \(x=y=z=1\)

:))

Chọn D