K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2015

\(7x^2-8x=7\left(x^2-\frac{8}{7}\right)=7\left(x^2-2.x.\frac{4}{7}+\frac{16}{49}-\frac{16}{49}\right)\)

\(=7\left[\left(x-\frac{4}{9}\right)^2-\frac{16}{49}\right]=7\left(x-\frac{4}{9}\right)^2-\frac{16}{7}\)

Vì \(\left(x-\frac{4}{9}\right)^2\ge0\Leftrightarrow7\left(x-\frac{4}{9}\right)^2\ge0\Leftrightarrow7\left(x-\frac{4}{9}\right)^2-\frac{16}{7}\ge-\frac{16}{7}\)

VẬy GTNN của bt là -16/7 khi x -4/9 = 0=> x = 4/9

18 tháng 8 2015

C= \(\left(\sqrt{7}x\right)^2-2\sqrt{7}x.\sqrt{7}+7-7-3=\left(\sqrt{7}x-\sqrt{7}\right)^2-10\)

vi \(\left(\sqrt{7}x-\sqrt{7}\right)^2\)> 0

-> \(\left(\sqrt{7}x-\sqrt{7}\right)^2\)-10 > -10

vay C dat GTNN la -10 khi x=1

22 tháng 7 2019

GTNN của A=\(\frac{21}{4}\)tại x=\(\frac{-1}{2}\)

22 tháng 7 2019

\(A=7x^2+7x+7\)

A =\(7\left(x^2+x+1\right)\) 

A = \(7\)\(\left(x^2+2x\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\right)\) 

A=  \(7\left(x+\frac{1}{2}\right)^2.\frac{21}{4}\) 

\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\)\(7\left(x+\frac{1}{2}\right)^2+\frac{21}{4}\ge\frac{21}{4}\forall x\) 

  Dấu = sảy ra \(\Leftrightarrow\) x +1/2 = 0 \(\Leftrightarrow\) x= -1/2

 Vậy A đạt GTNN là 21/4 tại x= -1/2

2 tháng 10 2015

Nhớ cho 5 sao luôn nhé

 

Ta có: \(4x^2-8x+7=4x^2-8x+4+3\left(2x-2\right)^2+3\ge3\)

\(\Rightarrow B>0\)

Vậy B có GTLN \(\Leftrightarrow\left(2x-2\right)^2+3\)có GTNN

Mà \(\left(2x-2\right)^2+3\ge3\Rightarrow Min\left(4x^2=8x+7\right)=3\Leftrightarrow2x-2=0\Leftrightarrow x=1\)

\(\Rightarrow\)Max B = 3\(\Leftrightarrow x=1\)

1 tháng 8 2015

A = 9x2 - 6xy + 5y2 + 1 = (3x)2 + 2.3y + y2 + (2y)2 + 1 = ( 3x + y)2 + ( 2y )2 +1 
mà ( 3x + y)> 0 và ( 2y )> 0 

=> ( 3x + y )2 + (2y)2 + 1 > 0

Vậy gtnn của A là 1 

2 tháng 7 2016

GTNN:

\(\Leftrightarrow x^2+2\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}+1\)

\(\Leftrightarrow x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy Min của biểu thức trên =3/4 khi x+1/2=0 => x=-1/2

GTLL:

\(\Leftrightarrow-3\left(x^2-\frac{7}{3}x-\frac{1}{3}\right)\)

\(\Leftrightarrow-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{49}{36}-\frac{1}{3}\right)\)

\(\Leftrightarrow-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{61}{36}\right)\)

\(\Leftrightarrow-3\left[\left(x-\frac{7}{6}\right)^2-\frac{61}{36}\right]\)

\(\Leftrightarrow-3\left(x-\frac{7}{6}\right)^2+\frac{61}{12}\le\frac{61}{12}\)

Vậy Max của biểu thức trên = 61/12 khi x-7/6=0 => x=7/6

nha . cảm ơn . chúc bạn học tốt

23 tháng 8 2020

\(A=5-8x+x^2=-8x+x^2+6-11\)

\(=\left(x-4\right)^2-11\)

Vì \(\left(x-4\right)^2\ge0\forall x\)\(\Rightarrow\left(x-4\right)^2-11\ge-11\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x-4=0\Leftrightarrow x=4\)

Vậy Amin = - 11 <=> x = 4

23 tháng 8 2020

\(B=\left(2-x\right)\left(x+4\right)=-x^2-2x+8\)

\(=-\left(x^2+2x+1\right)+9=-\left(x+1\right)^2+9\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+1\right)^2+9\le9\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy Bmax = 9 <=> x = - 1