\(\frac{x^{1420}+x^{404}+x^{55}+x^{50}+x^{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2016

1425 :)) đúng chắc

7 tháng 4 2016

google

19 tháng 8 2016

Áp dụng bđt cosi ta được \(4x+\frac{1}{4x}\ge2\sqrt{4x.\frac{1}{4x}}=2\)
\(x+\frac{1}{4}\ge2\sqrt{\frac{1}{4}x}=\sqrt{x}\Leftrightarrow4x+1\ge4\sqrt{x}\Leftrightarrow4\left(x+1\right)\ge4\sqrt{x}+3\Leftrightarrow-\left(4\sqrt{x}+3\right)\ge-4\left(x+1\right)\Leftrightarrow-\frac{\left(4\sqrt{x}+3\right)}{x+1}\ge-4\)Khi đó \(A\ge2-4+2016=2014\)
Dấu = xảy ra khi x=1/4

25 tháng 7 2016

Bài 1 : \(A=\frac{2016}{x^2-2x+2017}\) đạt GTLN khi \(x^2-2x+2017\) đạt GTNN .

\(x^2-2x+2017=x^2-2x+1+2016=\left(x-1\right)^2+2016\Rightarrow GTNN\) của \(x^2-2x+2017\) là \(2016\)

\(\Rightarrow GTLN\) của \(A\) là : \(\frac{2016}{2016}=1\)

25 tháng 7 2016

Bài 2 :

a ) Đặt \(A=\frac{2}{6x-9x^2-21}.A\) đạt \(GTNN\) Khi \(\frac{1}{A}\) đạt \(GTLN\).

Ta có : \(\frac{1}{A}=\frac{-9x^2+6x-21}{20}=-\frac{9}{20}\left(x-\frac{1}{3}\right)^2-1\le-1\)

Vậy \(Max\left(\frac{1}{A}\right)=-1\Leftrightarrow x=\frac{1}{3}\)

\(\Rightarrow Min_A=-1\Rightarrow x=\frac{1}{3}\)

b ) Đặt \(B=\left(x-1\right)\left(x-2\right)\left(x-5\right)\left(x-6\right)\)

Ta có : \(B=\left[\left(x-1\right)\left(x-6\right)\right].\left[\left(x-2\right)\left(x-5\right)\right]=\left(x^2-7x+6\right)\left(x^2-7x+10\right)\)

Đặt \(y=x^2-7x+8\Rightarrow B=\left(y+2\right)\left(y-2\right)=y^2-4\ge-4\)

\(Min_B=-4\) khi và chỉ khi \(x^2-7x+8=0\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{7+\sqrt{17}}{2}\\x=\frac{7-\sqrt{17}}{2}\end{array}\right.\)

 

12 tháng 12 2017

\(E=\frac{x^3}{x}+\frac{1000}{x}+\frac{1000}{x}\)

Áp dụng BĐT Côsi cho 3 số dương , ta có :

                          \(E\ge3\sqrt[3]{\frac{x^3\cdot1000\cdot1000}{x\cdot x\cdot x}}=3\cdot100=300\)

Dấu " = " xảy ra <=> \(x=10\)

P/S : Đây là bài cuối cùng trong đề thi hk kì 1 của mk hôm nay :)

12 tháng 12 2017

Cảm ơn bạn mai mình cũng bắt đầu thi môn toán

17 tháng 6 2019

Tham khảo bài 8 trong link: Câu hỏi của Nguyễn Linh Chi - Toán lớp - Học toán với OnlineMath

26 tháng 3 2020

Tham khảo link này : https://olm.vn/hoi-dap/detail/223163065606.html

2 tháng 11 2017

\(x\)+\(\frac{4}{x}+\frac{8}{x}+\frac{32}{y}\) \(\ge2\sqrt{\frac{x.4}{x}}+2\left(\frac{4}{x}+\frac{16}{y}\right)\) (cosi)

áp dụng bdt cauchy -swart dạng phân thức \(vt\ge4+2\left(\frac{\left(2+4\right)^2}{x+y}\right)\ge4+2.\frac{6^2}{6}=16\)

đầu = xảy ra khi x=2; y=4