Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=x^2+y^2-xy-x+y+1\)
\(=\left(x^2-xy+\frac{1}{4}y^2\right)-\left(x-\frac{1}{2}y\right)+\frac{1}{4}+\left(\frac{3}{4}y^2+\frac{1}{2}y+\frac{1}{12}\right)+\frac{2}{3}\)
\(=\left(x-\frac{1}{2}y\right)^2-\left(x-\frac{1}{2}y\right)+\frac{1}{4}+\frac{3}{4}\left(y^2+\frac{2}{3}y+\frac{1}{9}\right)+\frac{2}{3}\)
\(=\left(x-\frac{1}{2}y-\frac{1}{2}\right)^2+\frac{3}{4}\left(y+\frac{1}{3}\right)^2+\frac{2}{3}\ge\frac{2}{3}\forall x;y\)có GTNN là \(\frac{2}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{3};y=-\frac{1}{3}\)
mình làm thế này có đúng không bạn?
ta có : \(M=x^2+y^2-xy-x+y+1\)
<=> \(2M=2x^2+2y^2-2xy-2x+2y+2\)
<=> \(2M=x^2-2xy+y^2+x^2-2x+1+y^2+2y+1\)
<=>\(2M=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\)
<=> \(M=\frac{\left(x-y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2}{2}\)\(\ge0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-y=0\\x-1=0\\y+1=0\end{cases}}\)<=>\(\hept{\begin{cases}x=y\\x=1\\y=-1\end{cases}}\)