Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x) = x3 +3/x = x3 + 1/x +1/x +1/x
cô si 4 số làm mất x là xong
Tìm giá trị nhỏ nhất của hàm số f(x) =\(\frac{9}{2x-4}\) - \(\frac{32}{x}\)\(\forall\)x\(\in\) (0;2)
\(f\left(x\right)=2x+\frac{4}{x}\ge2\sqrt{\frac{8x}{x}}=4\sqrt{2}\)
\(f\left(x\right)_{min}=4\sqrt{2}\) khi \(x=\frac{2}{x}\Rightarrow x=\sqrt{2}\)
\(f\left(x\right)=3x+\frac{2}{\left(2x+1\right)^2}=\frac{3}{4}\left(2x+1\right)+\frac{3}{4}\left(2x+1\right)+\frac{2}{\left(2x+1\right)^2}-\frac{3}{2}\)
\(\ge3\sqrt[3]{\left[\frac{3}{4}\left(2x+1\right)\right]^2.\frac{2}{\left(2x+1\right)^2}}-\frac{3}{2}=\frac{3}{2}\sqrt[3]{9}-\frac{3}{2}\)
Dấu \(=\)khi \(\frac{3}{4}\left(2x+1\right)=\frac{2}{\left(2x+1\right)^2}\Leftrightarrow\left(2x+1\right)^3=\frac{8}{3}\Leftrightarrow x=\frac{1}{\sqrt[3]{3}}-\frac{1}{2}\).
\(f\left(x\right)=2x^2+\frac{4}{x}=2x^2+\frac{2}{x}+\frac{2}{x}\ge3\sqrt[3]{\frac{8x^2}{x^2}}=6\)
\(f\left(x\right)_{min}=6\) khi \(x^2=\frac{1}{x}\Rightarrow x=1\)