\(A=\frac{2x^2-7x+1}{x^2+4x+5}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2015

\(Ax^2+4Ax+5A-2x^2+7x-1=0\)

\(\left(A-2\right)x^2+\left(4A+7\right)x+5A-1=0\)

+A=2 => 15x +9 =0 => x =-3/5  (1)

+A khác 2 : PT có nghiệm khi :\(\Delta\ge0\Leftrightarrow\left(4A+7\right)^2+4\left(A-2\right)\left(1-5A\right)\ge0\)

 16A2 +56A+49 -20A2 +44A -8 >/ 0 => 4A2 -100A -41 </ 0  

  =>  \(\frac{25-3\sqrt{74}}{2}\le A\le\frac{25+3\sqrt{74}}{2}\)(2)

(1)(2) => \(\frac{25-3\sqrt{74}}{2}\le A\le\frac{25+3\sqrt{74}}{2}\)

=> A min=\(\frac{25-3\sqrt{74}}{2}\)

A max =\(\frac{25+3\sqrt{74}}{2}\)

 

   

21 tháng 8 2020

a) \(A=\sqrt{4x^2+4x+2}=\sqrt{4x^2+4x+1+1}=\sqrt{\left(2x+1\right)^2+1}\)

Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x+1\right)^2+1\ge1\forall x\)

\(\Rightarrow A\ge\sqrt{1}=1\)

Dấu " = " xảy ra \(\Leftrightarrow2x+1=0\)\(\Leftrightarrow2x=-1\)\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(minA=1\Leftrightarrow x=\frac{-1}{2}\)

b) \(B=\sqrt{2x^2-4x+5+1}=\sqrt{2x^2-4x+2+3+1}=\sqrt{2\left(x^2-2x+1\right)+4}\)

\(=\sqrt{2\left(x-1\right)^2+4}\)

Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+4\ge4\forall x\)

\(\Rightarrow B\ge\sqrt{4}=2\)

Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)

Vậy \(minB=2\Leftrightarrow x=1\)

21 tháng 8 2020

Mơn bạn nha

24 tháng 7 2019

\(A=\frac{3-4x}{2x^2+2}\)

\(\Leftrightarrow2Ax^2+2A=3-4x\)

\(\Leftrightarrow2Ax^2+4x+2A-3=0\)

*Nếu A = 0 thì \(x=\frac{3}{4}\)

*Nếu A # 0 thì pt trên là pt bậc 2

Pt có nghiệm \(\Leftrightarrow\Delta'\ge0\)

                      \(\Leftrightarrow4-2A\left(2A-3\right)\ge0\)

                      \(\Leftrightarrow4-4A^2+6A\ge0\)

                     \(\Leftrightarrow-\frac{1}{2}\le A\le2\)

Vì \(-\frac{1}{2}< 0\Rightarrow\hept{\begin{cases}A_{min}=-\frac{1}{2}\Leftrightarrow x=...\\A_{max}=2\Leftrightarrow x=...\end{cases}}\)(CHỗ ... là tự làm nhé)

9 tháng 7 2019

Ta có:

\(x^2-4x+8=\left(x^2-4x+4\right)+4=\left(x-2\right)^2+4\ge4\)

\(\Rightarrow\frac{1}{x^2-4x+8}\le\frac{1}{4}\)

Dấu "=" xảy ra khi \(x=2\)

Bài toán không có giá trị nhỏ nhất.Giải toán có sự trợ giúp của Wolfram|Alpha

27 tháng 11 2017

GTNN :\(A=\frac{\left(2x^2+2\right)+\left(x^2-2x+1\right)}{x^2+1}=2+\frac{\left(x-1\right)^2}{x^2+1}\ge2\forall x\) có GTNN là 2

GTLN : \(A=\frac{\left(4x^2+4\right)-\left(x^2+2x+1\right)}{x^2+1}=4-\frac{\left(x+1\right)^2}{x^2+1}\le4\forall x\) có GTLN là 4

14 tháng 7 2016

toán 12 nha