\(y=\frac{\cos x-\sin x+1}{\sin x+2\cos x-4}\) ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
22 tháng 6 2021

a) \(cos^4x-sin^4x=\left(cos^2x+sin^2x\right)\left(cos^2x-sin^2x\right)=cos^2x-sin^2x\)

b) \(\frac{1}{1+tanx}+\frac{1}{1+cotx}=\frac{1}{1+tanx}+\frac{tanxcotx}{tanxcotx+cotx}=\frac{1}{1+tanx}+\frac{tanx}{tanx+1}\)

\(=\frac{1+tanx}{1+tanx}=1\)

c) Ta có: \(1+tan^2x=1+\frac{sin^2x}{cos^2x}=\frac{cos^2x+sin^2x}{cos^2x}=\frac{1}{cos^2x}\)

\(\Rightarrow\frac{1}{1+tan^2x}=cos^2x\)

Tương tự \(\frac{1}{1+tan^2y}=cos^2y\)

\(\Rightarrow cos^2x-cos^2y=\frac{1}{1+tan^2x}-\frac{1}{1+tan^2y}\)

\(cos^2x-cos^2y=\left(1-sin^2x\right)-\left(1-sin^2y\right)=sin^2y-sin^2x\)

d) \(\frac{1+sin^2x}{1-sin^2x}=\frac{cos^2x+sin^2x+sin^2x}{cos^2x+sin^2x-sin^2x}=\frac{cos^2x+2sin^2x}{cos^2x}=1+2\left(\frac{sinx}{cosx}\right)^2=1+2tan^2x\)

2 tháng 8 2018

a+b+c : dựa vào cái hệ thức \(\sin^2\alpha+\cos^2\alpha=1\)

a) Ta có :  \(\left(\sin x+\cos x\right)^2\)

\(=\sin^2x+2.\sin x.\cos x+\cos^2x\)

\(=1+2.\sin x.\cos x\left(đpcm\right)\)

b) Ta có :  \(\left(\sin x+\cos x\right)^2+\left(\sin x-\cos x\right)^2\)

\(=\sin^2x+2.\sin x.\cos x+\cos^2x+\sin^2x-2.\sin x.\cos x+\cos^2x\)

\(=\sin^2x+\cos^2x+\sin^2x+\cos^2x\)

\(=2\left(\sin^2x+\cos^2x\right)\)

\(=2\times1=2\left(đpcm\right)\)

c) Ta có :  \(\sin^4x+\cos^4x\)

\(=\left(\sin^2x\right)^2+\left(\cos^2x\right)^2\)

\(=\left(\sin^2x+\cos^2x\right)^2-2.\sin^2x.\cos^2x\)

\(=1-2.\sin^2x.\cos^2x\left(đpcm\right)\)

Vậy ...

16 tháng 3 2020

1.

\(\frac{1-2sin\alpha cos\alpha}{sin^2\alpha-cos^2\alpha}=\frac{sin\alpha-cos\alpha}{sin\alpha+cos\alpha}\)

\(\Leftrightarrow\frac{1-2sin\alpha cos\alpha}{\left(sin\alpha-cos\alpha\right)\left(sin\alpha+cos\alpha\right)}=\frac{sin\alpha-cos\alpha}{sin\alpha+cos\alpha}\)

\(\Leftrightarrow1-2sin\alpha cos\alpha=\left(sin\alpha-cos\alpha\right)^2\)

\(\Leftrightarrow1-2sin\alpha cos\alpha=sin^2\alpha+cos^2\alpha-2sin\alpha cos\alpha\)

\(\Leftrightarrow1-2sin\alpha cos\alpha=1-2sin\alpha cos\alpha\left(đpcm\right)\)

17 tháng 3 2020

Bạn giúp mình bài này luôn với nha

Cho tam giác ABC ( AB < AC ) nội tiếp trong đường tròn (O) . Kẻ đường cao AH của tam giác ABC. Gọi P, Q lần lượt là chân đường vuông góc kẻ từ H xuống AB, AC .

1) Chứng minh rằng BCQP là tứ giác nội tiếp.

2) Hai đường thẳng BC,QP cắt nhau tại M . Chứng minh rằng: MH^2 = MB.MC .

3) Đường thẳng MA cắt đường tròn (O) tại K ( K khác A ). Gọi I là tâm đường tròn ngoại tiếp tứ giác BCQP . Chứng minh rằng I , H, K thẳng hàng.

27 tháng 7 2019

1) \(\frac{1-2\sin\alpha\cdot\cos\alpha}{sin^2\alpha-\cos^2\alpha}=\frac{sin^2\alpha+\cos^2\alpha-2sin\alpha\cdot\cos\alpha}{sin^2\alpha-\cos^2\alpha}\)\(=\frac{\left(sin\alpha-\cos\alpha\right)^2}{sin^2\alpha-\cos^2\alpha}=\frac{sin\alpha-\cos\alpha}{sin\alpha+\cos\alpha}\)(đpcm)

2) \(cos^4\alpha+sin^2\alpha\cdot cos^2\alpha+sin^2\alpha\)

\(=cos^4\alpha+\left(1-cos^2\alpha\right)\cdot cos^2\alpha+sin^2\alpha\)

\(=cos^4\alpha+cos^2\alpha-cos^4\alpha+sin^2\alpha\)

\(=cos^2\alpha+sin^2\alpha=1\)(đpcm)

DD
24 tháng 6 2021

a) \(sin^2x+cos^2x=1\Leftrightarrow cos^2x=1-sin^2x=1-\frac{3}{4}=\frac{1}{4}\)

\(\Leftrightarrow\orbr{\begin{cases}cosx=\frac{1}{2}\\cosx=-\frac{1}{2}\end{cases}}\)

\(cosx=\frac{1}{2}\)

\(tanx=\frac{sinx}{cosx}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\sqrt{3}\)

\(tanx.cotx=1\Rightarrow cotx=\frac{1}{tanx}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\)

\(cosx=\frac{-1}{2}\)

\(tanx=\frac{sinx}{cosx}=\frac{\frac{\sqrt{3}}{2}}{\frac{-1}{2}}=-\sqrt{3}\)

\(tanx.cotx=1\Rightarrow cotx=\frac{1}{tanx}=\frac{1}{-\sqrt{3}}=\frac{-\sqrt{3}}{3}\)

b) Bạn làm tương tự câu a) nha.