Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=x^2-6x+11\)
\(\Rightarrow A=x^2-6x+9+2\)
\(\Rightarrow A=\left(x-3\right)^2+2\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-3\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\) x = 3
Vậy \(MIN\) \(A=2\Leftrightarrow x=3\)
b) \(B=2x^2+10x-1\)
\(\Rightarrow B=2\left(x^2+5\right)-1\)
\(\Rightarrow B=2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{25}{2}-1\)
\(\Rightarrow B=2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{23}{2}\)
Ta có: \(2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)\ge0\forall x\)
\(\Rightarrow2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{23}{2}\ge-\dfrac{23}{2}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\) x = \(\dfrac{-5}{2}\)
Vậy \(MIN\) \(B=\dfrac{-23}{2}\Leftrightarrow x=\dfrac{-5}{2}\)
c) \(C=5x-x^2\)
\(\Rightarrow C=-\left(x^2-5x\right)\)
\(\Rightarrow C=-\left(x^2-2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)+\dfrac{25}{4}\)
\(\Rightarrow C=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\)
Ta có: \(-\left(x-\dfrac{5}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\) x = \(\dfrac{5}{2}\)
Vậy \(MAX\) \(C=\dfrac{25}{4}\Leftrightarrow x=\dfrac{5}{2}\)
A = x2 - 6x + 11
Nhập phương trình vào máy tính lặp 3 lần dấu =
GTNN của A = 3
B = 2x2 + 10x - 1
Nhập phương trình vào máy tính lặp 3 lần dấu =
GTNN của B = \(-\frac{5}{2}\)
C = 5x - x2
=> C = -x2 + 5x
Nhập phương trình vào máy tính lặp 3 lần dấu =
GTLN của C = \(\frac{5}{2}\)
Mình chỉ tìm giá trị chứ không tìm x đâu nhé (đề bài ghi thế)
a)
\(A=x^2-6x+11\\ =x^2-6x+9+2\\ =\left(x-3\right)^2+2\)
\(\left(x-3\right)^2\ge0\forall x\\ 2\ge2\\ \Rightarrow\left(x-3\right)^2+2\ge2\forall x\\ A\ge2\forall x\\ \Rightarrow A_{min}=2\)
b) B = 2x2 + 10 - 1
B = 2(x2 + 5) - 1
B = 2(x2 + 2.\(\frac{5}{2}\).x + \(\frac{25}{4}\)) - \(\frac{25}{2}\) - 1
B = 2(x + \(\frac{5}{2}\))2 - \(\frac{27}{2}\)
Vậy GTNN của B = \(\frac{-27}{2}\) khi x = \(\frac{-5}{2}\).
c) C = 5x - x2
C = -(x2 - 5x)
C = -(x2 - 2.\(\frac{5}{2}\).x + \(\frac{25}{4}\)) + \(\frac{25}{4}\)
C = -(x - \(\frac{5}{2}\))2 + \(\frac{25}{4}\)
Vậy GTLN của C = \(\frac{25}{4}\) khi x = \(\frac{5}{2}\).
a) \(A=x^2-6x+11\)
\(A=x^2-6x+9+2\)
\(A=\left(x-3\right)^2+2\)
Có: \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+2\ge2\)
Dấu = xảy ra khi: \(\left(x-3\right)^2=0\Rightarrow x-3=0\Rightarrow x=3\)
Vậy: \(Min_A=2\) tại \(x=3\)
b) \(B=2x^2+10x-1\)
\(B=2x^2+10x+\frac{25}{2}-\frac{27}{2}\)
\(B=\left(\sqrt{2}x-\sqrt{\frac{25}{2}}\right)^2-\frac{27}{2}\)
Có: \(\left(\sqrt{2}x-\sqrt{\frac{25}{2}}\right)^2\ge0\Rightarrow\left(\sqrt{2}x-\sqrt{\frac{25}{2}}\right)^2-\frac{27}{2}\ge-\frac{27}{2}\)
Dấu = xảy ra khi: \(\left(\sqrt{2}x-\sqrt{\frac{25}{2}}\right)^2=0\Rightarrow\sqrt{2}x-\sqrt{\frac{25}{2}}=0\Rightarrow x=\frac{5}{2}\)
Vậy: \(Min_B=-\frac{27}{2}\) tại \(x=\frac{5}{2}\)
c) \(C=5x-x^2\)
\(C=\frac{25}{4}-x^2+5x-\frac{25}{4}\)
\(C=\frac{25}{4}-\left(x-\frac{5}{2}\right)^2\)
Có: \(\left(x-\frac{5}{2}\right)^2\ge0\Rightarrow\frac{25}{4}-\left(x-\frac{5}{2}\right)^2\le\frac{25}{4}\)
Dấu = xảy ra khi: \(\left(x-\frac{5}{2}\right)^2=0\Rightarrow x-\frac{5}{2}=0\Rightarrow x=\frac{5}{2}\)
Vậy: \(Max_C=\frac{25}{4}\) tại \(x=\frac{5}{2}\)
a) \(A=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\)
\(\left(x-3\right)^2\ge0\forall x\Rightarrow\left(x-3\right)^2+2\ge2\)
Đẳng thức xảy ra <=> x - 3 = 0 => x = 3
Vậy AMin = 2 , đạt được khi x = 3
b) \(B=5x-x^2=-x^2+5x=-x^2+5x-\frac{25}{4}+\frac{25}{4}=-\left(x^2-5x+\frac{25}{4}\right)+\frac{25}{4}=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)
\(-\left(x-\frac{5}{2}\right)^2\le0\forall x\Rightarrow-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
Đẳng thức xảy ra <=> x - 5/2 = 0 => x = 5/2
Vậy BMax = 25/4 , đạt được khi x = 5/2
c) \(2x-2x^2-5=-2x^2+2x-5=-2\left(x^2-x+\frac{1}{4}\right)-\frac{9}{2}=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\)
\(-2\left(x-\frac{1}{2}\right)^2\le0\forall x\Rightarrow-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\le-\frac{9}{2}\)
Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2
Vậy CMax = -9/2 , đạt được khi x = 1/2
mọi người ơi giúp mình trả lồi câu hỏi này vớiiiiiiiiiiii
\(a,A=x^2-6x+11=\left(x-3\right)^2+2\)\(\Leftrightarrow Amin=2\)
Dấu = xảy ra \(\Leftrightarrow x=3\)
\(2x^2+10x-1=2\left(x^2+5x-\frac{1}{2}\right)=2\left(x^2+2.\frac{5}{2}x+\frac{25}{4}-\frac{27}{4}\right)=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\)
\(\Rightarrow Bmin=\frac{-27}{2}.''=''\Leftrightarrow x=\frac{-5}{2}\)