\(\frac{^2}{^2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2018

\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(\Leftrightarrow A=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)

\(\Leftrightarrow A=\left(x^2-x+6x-6\right)\left(x^2+2x+3x+6\right)\)

\(\Leftrightarrow A=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(\Leftrightarrow A=\left(x^2+5x\right)^2-36\ge-36\forall x\)

Dấu " = " xảy ra

\(\Leftrightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Vậy GTNN của A là : \(-36\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

14 tháng 8 2017

\(E=x^2-\frac{1}{2}x+1\)

\(=\left(x^2-\frac{1}{2}x+\frac{1}{4}\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

vậy min E=3/4 <=> x=1/2

4 tháng 9 2017

ĐK : \(x\ne-2\)

ta có \(A=\frac{x^2+2x+3}{\left(x+2\right)^2}=\frac{3x^2+6x+9}{3\left(x+2\right)^2}=\frac{2x^2+8x+8+x^2-2x+1}{3\left(x+2\right)^2}\)

             \(=\frac{2\left(x+2\right)^2+\left(x-1\right)^2}{3\left(x+2\right)^2}=\frac{2}{3}+\frac{\left(x-1\right)^2}{3\left(x+2\right)^2}\) 

vì (x-1)^2 >=0=> \(\frac{\left(x-1\right)^2}{3\left(x+2\right)^2}>=0\)

=> \(A>=\frac{2}{3}\)

dấu = xảy ra <=> x=1 ( thỏa mãn ĐKXĐ)

9 tháng 1 2018

\(A=36-3x+\dfrac{1}{2}x^2=\dfrac{1}{2}\left(x^2-6x+72\right)\)

\(=\dfrac{1}{2}\left[\left(x^2-6x+9\right)+63\right]=\dfrac{1}{2}\left[\left(x-3\right)^2+63\right]\)

Có: \(\left(x-3\right)^2\ge0\forall x\Rightarrow\left(x-3\right)^2+63\ge63\)

\(\dfrac{1}{2}\left[\left(x-3\right)^2+63\right]\ge\dfrac{1}{2}\cdot63=\dfrac{63}{2}\)

Dấu ''='' xảy ra khi x = 3

Vậy \(MIN_A=\dfrac{63}{2}\Leftrightarrow x=3\)

17 tháng 3 2019

\(Q=2x^2+\frac{2}{x^2}+3y^2+\frac{3}{y^2}+\frac{4}{x^2}+\frac{5}{y^2}\)

Áp dụng cô si ,ta có

\(2x^2+\frac{2}{x^2}\ge2\sqrt{2x^2\cdot\frac{2}{x^2}}=4\)

\(3y^2+\frac{3}{y^2}\ge2\sqrt{3y^2\cdot\frac{3}{y^2}}=6\)

\(\Rightarrow Q\ge4+6+9=19\)

Dấu "=" xảy ra khi x=y=1

29 tháng 7 2019

Ta có:

A = -x2 - 4x - 2 = -(x2 +  4x + 4) + 2 = -(x + 2)2 + 2

Ta luôn có: -(x + 2)2 \(\le\)\(\forall\)x

=> -(x + 2)2 + 2 \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2

Vậy Max của A = 2 tại x = -2 

(xem lại đề)