K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

Theo đề bài ta có:

\(\left\{{}\begin{matrix}\left|y+1\right|\ge0\Rightarrow\left|y+1\right|^2\ge0\forall y\\\left(z-4\right)^4\ge0\Rightarrow3\left(z-4\right)^4\ge0\forall z\end{matrix}\right.\)

\(\Rightarrow\left|y+1\right|^2+3\left(z-4\right)^4\ge0\)

\(\Rightarrow\left|y+1\right|^2+3\left(z-4\right)^4+5\ge5\)

\(\Rightarrow\dfrac{x}{\left|y+1\right|^2+3\left(z-4\right)^4+5}\le\dfrac{x}{5}\)

Đến đây chỉ tìm được MAX ko có MIN nha bạn

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|y+1\right|^2=0\Rightarrow y=-1\\3\left(z-4\right)^4=0\Rightarrow z=4\end{matrix}\right.\)

Vậy \(MAX=\dfrac{x}{5}\) khi \(y=-1;z=4\)

8 tháng 8 2017

Hồng Phúc Nguyễn Ace Legona Hoàng Ngọc Anh

@phynit @Bùi Thị Vân

31 tháng 10 2021

Ai lm đc câu nào thì giúp mk với , cảm ơn !!

31 tháng 10 2021

\(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\ge\dfrac{1}{9}\\ A_{min}=\dfrac{1}{9}\Leftrightarrow x=\dfrac{3}{5}\\ B=\dfrac{2009}{2008}-\left|x-\dfrac{3}{5}\right|\le\dfrac{2009}{2008}\\ B_{max}=\dfrac{2009}{2008}\Leftrightarrow x=\dfrac{3}{5}\\ C=-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\le1\dfrac{2}{3}\\ C_{max}=1\dfrac{2}{3}\Leftrightarrow\dfrac{1}{3}x=-4\Leftrightarrow x=-12\)

a: \(A=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

30 tháng 8 2017

\(\dfrac{5}{\left|x-y\right|^2+\left(y-z\right)^2+\left|z-x\right|^4+6}\)

Cái này cũng làm tương tự như cái kia thôi:
Ta có:

\(\left\{{}\begin{matrix}\left|x-y\right|^2\ge0\\\left(y-z\right)^2\ge0\\\left|z-x\right|^4\ge0\end{matrix}\right.\) \(\Leftrightarrow\left|x-y\right|^2+\left(y-z\right)^2+\left|z-x\right|^4\ge0\)

\(\Leftrightarrow\left|x-y\right|^2+\left(y-z\right)^2+\left|z-x\right|^4+6\ge6\)

\(A=\dfrac{5}{\left|x-y\right|^2+\left(y-z\right)^2+\left|z-x\right|^4+6}\ge\dfrac{5}{6}\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|x-y\right|^2=0\\\left(y-z\right)^2=0\\\left|z-x\right|^4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\Leftrightarrow x=y=z\)

Vậy

30 tháng 8 2017

\(\dfrac{5}{\left|x-y\right|^2+\left(y-z\right)^2+\left|z-x\right|^4+6}\)

23 tháng 6 2017

C=|x+5| + |x+3|

Để C nhỏ nhất thì Ix+5I nhỏ nhất hoặc I x+3I nhỏ nhất => x+5 = 0 hoặc x+3 = 0

x= -5 hoặc x=-3

Thay x=-5 vào C=|x+5| + |x+3|, có: I -5+5I + I -5+3I = 0 +2 = 2

Thay x=-3 vào C=|x+5| + |x+3|. có: I -3+5I + I -3+3I = 2 + 0 = 2

Vậy GTNN của C=|x+5| + |x+3| là 2 tại x= -5 hoặc c=-3

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

$A=(x-4)^2+1$

Ta thấy $(x-4)^2\geq 0$ với mọi $x$

$\Rightarroe A=(x-4)^2+1\geq 0+1=1$

Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$

-------------------

$B=|3x-2|-5$

Vì $|3x-2|\geq 0$ với mọi $x$ 

$\Rightarrow B=|3x-2|-5\geq 0-5=-5$

Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

$C=5-(2x-1)^4$

Vì $(2x-1)^4\geq 0$ với mọi $x$ 

$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$

Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$

----------------

$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$

$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$

Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$

$\Leftrightarrow x=3; y=1$

26 tháng 8 2023

\(C=-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\)

\(\Rightarrow C=-2\left|\dfrac{1}{3}x+4\right|+\dfrac{5}{3}\)

mà \(-2\left|\dfrac{1}{3}x+4\right|\le0,\forall x\)

\(\Rightarrow C=-2\left|\dfrac{1}{3}x+4\right|+\dfrac{5}{3}\le\dfrac{5}{3}\)

\(\Rightarrow GTLN\left(C\right)=\dfrac{5}{3}\left(tạix=-12\right)\)

8 tháng 12 2021

a)Vì |x-1/2|≥0

|x-1/2|-3≥0-3

A=|x-1/2|-3≥-3

=>A≥-3

Dấu ''='' xảy ra khi

x-1/2=0

x=0+1/2

x=1/2

Vậy GTNN của biểu thức đã cho là -3 khi  x=1/2

b)

Vì |x-4|≥0

-|x-4|≤0

=>2/3-|x-4|≤2/3-0

2/3-|x-4|≤2/3

=>B=2/3-|x-4|≤2/3

B≤2/3

Dấu ''='' xảy ra khi

x-4=0

x=0+4

x=4

Vậy GTLN của biểu thức là 2/3 khi x=4