Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: \(\left|x+2\right|\ge0\Rightarrow A=\left|x+2\right|+50\ge50\)
Dấu "=" xảy ra khi x=-2
Vậy GTNN của A=50 khi x=-2
b, Ta có: \(\left|x-100\right|\ge0;\left|y+200\right|\ge0\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\Rightarrow B=\left|x-100\right|+\left|y+200\right|-1\ge-1\)
Dấu "=" xảy ra khi x=100,y=-200
Vậy GTNN của B=-1 khi x=100,y=-200
c, Đặt C = 2015-|x+5|
Ta có: \(\left|x+5\right|\ge0\Rightarrow-\left|x+5\right|\le0\Rightarrow C=2015-\left|x+5\right|\le2015\)
Dấu "=" xảy ra khi x=-5
Vậy GTLN của C = 2015 khi x = -5
a, Ta có : (x-5)2 \(\ge\)0 với mọi x
=> (x-5)2 + 2016 \(\ge\) 2016
Dấu " = " xảy ra <=> (x-5)2=0
=> x-5=0
=> x=5
b, Ta có -(x+3)2 \(\le\)0
=> -(x+3)2 +2015 \(\le\)2015
Dấu " = " xảy ra <=> -(x+3)2 = 0
=> x+3 = 0
=> x = -3
nhớ k đúng cho mk nha!! :))
bài này ko hay cho lắm, cách làm cụ thể nhất trong cái nhất r` đấy
a)Ta thấy: \(\left|x-5\right|\ge0\)
\(\Rightarrow-\left|x-5\right|\le0\)
\(\Rightarrow1000-\left|x-5\right|\le1000\)
\(\Rightarrow A\le1000\)
Dấu "=" xảy ra khi \(\left|x-5\right|=0\Leftrightarrow x=5\)
Vậy \(Max_A=1000\) khi \(x=5\)
b)Ta thấy: \(\left|y-3\right|\ge0\)
\(\Rightarrow\left|y-3\right|+50\ge50\)
\(\Rightarrow B\ge50\)
Dấu "="xảy ra khi \(\left|y-3\right|=0\Leftrightarrow y=3\)
Vậy \(Min_B=50\) khi \(y=3\)
c)Ta thấy: \(\hept{\begin{cases}\left|x-100\right|\ge0\\\left|y+200\right|\ge0\end{cases}}\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|-1\ge-1\)
\(\Rightarrow C\ge-1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-100\right|=0\\\left|y+200\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
Vậy \(Min_C=-1\) khi \(\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
Ta có : \(\left(x-11\right)^2\ge0\forall x\in R\)
Nên : \(A=\left(x-11\right)^2+2015\ge2015\forall x\)
Do đó : \(A_{max}=2015\) khi x = 11
Ta có : \(\left(x-1\right)^2\ge0\forall x\)
\(\left|x+y\right|\ge0\forall x,y\)
Nên : \(B=-2018+\left(x-1\right)^2+\left|x+y\right|\ge-2018\forall x\)
Vậy \(B_{max}=-2018\) khi x = 1 và y = -1
a) muốn A đạt giá trị lớn nhất thì /x-5/ đạt giá trị nhỏ nhât
mà /x-5/ đạt giá trị nhỏ nhất bằng 0
suy ra giá trị lớn nhất của A là 1000 khi x=5
b) muốn B đạt giá trị nhỏ nhất t hì /y-3/ đạt già trị nhỏ nhất
mà /y-3/ đạt giá trị nhỏ nhất bằng 0
suy ra giá trị nhỏ nhất của B bằng 50 khi y=3
c) muốn C đạt giá trị nhỏ nhất thì /x-100/ và /y+200/ đạt giá trị nhỏ nhất
mà /x-100/ đạt giá trị nhỏ nhất bằng 0
/y+200/ đạt giá trị nhỏ nhất bằng 0
suy ra giá trị nhỏ nhất của C bằng -1 khi x=100 và y=-200
a) muốn A đạt giá trị lớn nhất thì /x-5/ đạt giá trị nhỏ nhât
mà /x-5/ đạt giá trị nhỏ nhất bằng 0
suy ra giá trị lớn nhất của A là 1000 khi x=5
b) muốn B đạt giá trị nhỏ nhất t hì /y-3/ đạt già trị nhỏ nhất
mà /y-3/ đạt giá trị nhỏ nhất bằng 0
suy ra giá trị nhỏ nhất của B bằng 50 khi y=3
c) muốn C đạt giá trị nhỏ nhất thì /x-100/ và /y+200/ đạt giá trị nhỏ nhất
mà /x-100/ đạt giá trị nhỏ nhất bằng 0
/y+200/ đạt giá trị nhỏ nhất bằng 0
suy ra giá trị nhỏ nhất của C bằng -1 khi x=100 và y=-200
Bạn giải rõ hơn được không?