K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 11 2021

\(B=\dfrac{\left(x-2\right)\left(x-3\right)\left(x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x-3\right)}=\left(x-2\right)\left(x-1\right)\)

\(B=x^2-3x+2=\left(x-\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

\(B_{min}=-\dfrac{1}{4}\) khi \(x=\dfrac{3}{2}\)

1 tháng 11 2021

\(B=\dfrac{\left(x-3\right)\left(x-2\right)\left(x-4\right)\left(x-1\right)}{\left(x-4\right)\left(x-3\right)}=\left(x-2\right)\left(x-1\right)=x^2-3x+2=\left(x-\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

với mọi x.

\(B_{min}=-\dfrac{1}{4}\) tại \(x=\dfrac{3}{2}\)

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

\(4x^2\)+\(20x\)+\(25\)+\(6x^2\)\(8x\)\(x^2\)-\(22\)

=\(9x^2\)+\(12x\)+\(3\)

=\(9x^2\)+\(12x\)+\(3\)

=\(9x^2\)+\(12x\)+\(4\)-\(1\)

=(\(3x\)+\(2\))2-\(1\)

vì (\(3x\)+\(2\))2 >-0

=>.................-\(1\)>-(-1)

(>- là > hoặc =)

=> GTNN của M= -1 khi và chỉ khi \(3x\)+\(2\)=\(0\)

..................................

13 tháng 6 2018

\(P=\left(x+8\right)^2+\left(x+4\right)^2\)

\(P=x^2+16x+64+x^2+8x+16\)

\(P=2x^2+24x+80=2\left(x^2+12x+40\right)\)

Ta có: \(x^2+12x+40=\left(x^2+2.x.6+36\right)+4=\left(x+6\right)^2+4\)

Thấy \(\left(x+6\right)^2\ge0\forall x\Rightarrow x^2+12x+40\ge4\)

\(\Rightarrow P=2\left(x^2+12x+40\right)\ge2.4=8\)

Vậy Min P=8, dấu = xảy ra khi và chỉ khi x = -6.

30 tháng 12 2016

\(A=\left(x+8\right)^4+\left(x+6\right)^4\)

       Vì \(\left(x+8\right)^4\ge0;\left(x+6\right)^4\ge0\)

                         Suy ra:\(\left(x+8\right)^4+\left(x+6\right)^4\ge0\)

Dấu = xảy ra khi \(\orbr{\begin{cases}x+8=0\\x+6=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-8\\x=-6\end{cases}}\)

       Vậy Max A=0 khi x=-8;-6

30 tháng 12 2016

GTNN của A=2

khi =!y+2!=!y!

y=-1

c

có  thiện chí hỏi xẽ có câu trả lời chi tiết

13 tháng 12 2019

a

\(ĐKXĐ:x\in R\)

\(A=\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4+\frac{1-x^4}{1+x^2}\right)\)

\(A=\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4-x^2+1\right)\)

\(=\frac{\left(x^2-1\right)\left(x^4-x^2+1\right)}{x^4-x^2+1}-\frac{x^4-x^2+1}{x^2+1}\)

\(=x^2-1-\frac{x^4-x^2+1}{x^2+1}\)

\(=-1+\frac{x^4+x^2-x^4+x^2+1}{x^2+1}\)

\(=\frac{2x^2+1}{x^2+1}-1=\frac{2x^2+1-x^2-1}{x^2+1}=\frac{x^2}{x^2+1}\)

b

Xét \(x>0\Rightarrow M>0\)

Xét \(x=0\Rightarrow M=0\)

Xét \(x< 0\Rightarrow M>0\)

Vậy \(M_{min}=0\) tại \(x=0\)