Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) do /x-2/ lớn hơn hoặc bằng 0 với mọi x nên dấu bằng xảy ra khi x-2=0<=>x=2
vậy minA=0 khi x=2
các câu còn lại tương tự
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
\(a.\)\(A=|x|+|2014-x|\ge|x+2014-x|=2014\)
Dấu '=' xảy ra khi\(x\left(2014-x\right)>0\)
TH1:\(\hept{\begin{cases}x>0\\2014-x>0\end{cases}\Leftrightarrow0< x< 2014\left(n\right)}\)
TH2:\(\hept{\begin{cases}x< 0\\2014-x< 0\end{cases}\left(l\right)}\)
Vậy \(A_{min}=2014\)khi\(0< x< 2014\)
\(b.\)\(|x^2+|x-1||=x^2+2\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+|x-1|=-x^2-2\\x^2+|x-1|=x^2+2\end{cases}\Leftrightarrow\orbr{\begin{cases}|x-1|=-2x^2-2\left(l\right)\\|x-1|=2\left(n\right)\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=-2\\x-1=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}}\)
V...
A = 1,7 + | 3,4 - x |
Ta có : | 3, 4 - x | ≥ 0 ∀ x => 1, 7 + | 3, 4 - x | ≥ 1, 7 ∀ x
Dấu "=" xảy ra <=> 3, 4 - x = 0 => x = 3, 4
=> MinA = 1, 7 <=> x = 3, 4
B = -| 1, 4 - x | - 2
Ta có : -| 1, 4 - x | ≤ 0 ∀ x => -| 1, 4 - x | - 2 ≤ -2 ∀ x
Dấu "=" xảy ra <=> 1, 4 - x = 0 => x = 1, 4
=> MaxB = -2 <=> x = 1, 4
\(a,A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)-2018\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)-2018\)
Đặt \(x^2+5x=a\)
\(\Rightarrow A=\left(a-6\right)\left(a+6\right)-2018=a^2-2054\)
\(\Rightarrow A_{min}=2054\Leftrightarrow a=0\)
\(\Rightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow x\in\left\{0;-5\right\}\)
\(b,B=\left(x-1\right)\left(x-4\right)\left(x-5\right)\left(x-8\right)+2018.\)
\(=\left(x^2-9x+8\right)\left(x^2-9x+20\right)+2018\)
Đặt \(x^2-9x+14=a\)
\(\Rightarrow B=\left(a-6\right)\left(a+6\right)+2018\)
\(=a^2-36+2018=a^2+1982\)
\(\Rightarrow B_{min}=1982\Leftrightarrow a^2=0\Rightarrow a=0\)
\(\Rightarrow x^2-9x+14=0\)
\(\Rightarrow x^2-2x-7x+14=0\)
\(\Leftrightarrow x\left(x-2\right)-7\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x-7\right)=0\)
\(\Rightarrow x\in\left\{2;7\right\}\)
a)A=(3x^2+1)(x+1)>/0.vậy minA=0 khi và chỉ khi x=-1/3 và x=-1
b)B=(3x-2)(x-4)