Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm x y z thoả mãn đẳng thức 1/x2022+1/y2022+1/z2022=1/x2021+1/y2021+1/z2021=1/x2020+1/y2020+1/z2020
Đặt A = 5x2 + 2y2 + 4xy - 2x + 4y + 2022
= (2x2 + 4xy + 2y2) + 4(x + y) + 2 + (3x2 - 6x + 3) + 2017
= 2(x + y)2 + 4(x + y) + 2 + 3(x - 1)2 + 2017
= 2(x + y + 1)2 + 3(x - 1)2 + 2017 \(\ge\)2017
=> Min A = 2017
\(5x^2+2y^2+4xy-2x+4y+2022\)
\(=\left(4x^2+4x+y^2\right)+\left(y^2+4y+4\right)+\left(x^2-2x+1\right)+2017\)
\(=\left(2x+y\right)^2+\left(y+2\right)^2+\left(x-1\right)^2+2017\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}2x+y=0\\y+2=0\\x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)
Vậy \(Min_A=2017\Leftrightarrow x=1;y=-2\)
B=|x-2020|+|2021-x|>=|x-2020+2021-x|=1
Dấu = xảy ra khi 2020<=x<=2021
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{2022}\)
\(\Rightarrow\dfrac{yz+zx+xy}{xyz}=\dfrac{1}{x+y+z}\)
\(\Rightarrow\left(yz+zx+xy\right)\left(x+y+z\right)=xyz\)
\(\Rightarrow xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+3xyz-xyz=0\)
\(\Rightarrow xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+2xyz=0\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Rightarrow x=-y\) hoặc \(y=-z\) hoặc \(z=-x\).
-Đến đây thôi bạn, câu hỏi sai rồi ạ.