Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P >= 0
Dấu "=" xảy ra <=> x-2y=0 và y-2012=0
<=> x=4024 và y=2012
Vậy GTNN của P = 0 <=> x = 4024 và y = 2012
k mk nha
P >= 0
Dấu "=" xảy ra <=> x-2y=0 và y-2012=0
<=> x=4024 và y=2012
Vậy GTNN của P = 0 <=> x = 4024 và y = 2012
k mk nha
\(A=4x\left(x+y-2\right)^2+\left|2y-3\right|+1,5\)
Ta có:
\(4x\left(x+y-2\right)^2\ge0\)
\(\left|2y-3\right|\ge0\)
\(\Leftrightarrow4x\left(x+y-2\right)^2+\left|2y-3\right|\ge0\)
\(\Leftrightarrow4x\left(x+y-2\right)^2+\left|2y-3\right|+1,5\ge1,5\)
Dấu = xảy ra khi : \(x+y-2=0\Leftrightarrow x+y=2\)
\(2y-3=0\Leftrightarrow y=\frac{3}{2}\Leftrightarrow x=\frac{1}{2}\)
Vậy .....................
\(C=\left|2x+1\right|+\left|-2y-1\right|\ge\left|2x+1-2y-1\right|=2\left|x-y\right|=4\)
\(C_{min}=4\)
\(A=\left|x-3\right|+\left|y+3\right|+2016\)
\(\left|x-3\right|\ge0\)
\(\left|y+3\right|\ge0\)
\(\Rightarrow\left|x-3\right|+\left|y+3\right|+2016\ge2016\)
Dấu ''='' xảy ra khi \(x-3=y+3=0\)
\(x=3;y=-3\)
\(MinA=2016\Leftrightarrow x=3;y=-3\)
\(\left(x-10\right)+\left(2x-6\right)=8\)
\(x-10+2x-6=8\)
\(3x=8+10+6\)
\(3x=24\)
\(x=\frac{24}{3}\)
x = 8
a: \(\left(x-2\right)^2>=0\)
\(\left|y-x\right|>=0\)
Do đó: \(\left(x-2\right)^2+\left|y-x\right|>=0\forall x,y\)
=>\(\left(x-2\right)^2+\left|y-x\right|+3>=3\forall x,y\)
=>A>=3 với mọi x,y
Dấu = xảy ra khi x-2=0 và y-x=0
=>x=2=y
b: \(\left|x+5\right|>=0\)
=>\(\left|x+5\right|+5>=5\)
=>B>=5 với mọi x
Dấu = xảy ra khi x+5=0
=>x=-5
c: \(\left|x-2010\right|>=0\)
=>\(-\left|x-2010\right|< =0\)
=>\(-\left|x-2010\right|+2012< =2012\)
=>\(C=\dfrac{2011}{2012-\left|x-2010\right|}>=\dfrac{2011}{2012}\forall x\)
Dấu = xảy ra khi x=2010
a) Ta có:
\(A=\left(x-2\right)^2+\left|y-x\right|+3\)
Mà: \(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left|y-x\right|\ge0\end{matrix}\right.\)
\(\Rightarrow A=\left(x-2\right)^2+\left|y-x\right|+3\ge3\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}x-2=0\\y-x=0\end{matrix}\right.\)
\(\Rightarrow x=y=2\)
Vậy: \(A_{min}=3\Leftrightarrow x=y=2\)
b) Ta có:
\(B=\left|x+5\right|+5\)
Mà: \(\left|x+5\right|\ge0\)
\(\Rightarrow B=\left|x+5\right|+5\ge5\)
Dấu "=" xảy ra:
\(x+5=0\Rightarrow x=-5\)
Vậy: \(B_{min}=5\Leftrightarrow x=-5\)
c) Ta có:
\(C=\dfrac{2011}{2012-\left|x-2010\right|}\)
Mà: \(\left|x-2010\right|\ge0\)
\(\Rightarrow C=\dfrac{2011}{2012-\left|x-2010\right|}\ge\dfrac{2011}{2012}\)
Dấu "=" xảy ra khi:
\(x-2010=0\Rightarrow x=2010\)
Vậy: \(C_{min}=\dfrac{2011}{2012}\Leftrightarrow x=2010\)
GTNN của M =2014
dấu '=' xảy ra khi và chỉ khi \(\hept{\begin{cases}x=2y-10\\y=8\end{cases}}\)
\(\hept{\begin{cases}x=15\\y=8\end{cases}}\)
Vì \(|x-2y+10|+\left(y-8\right)^2\ge0\)\(\forall x,y\)
\(\Rightarrow M\ge2014\)\(\Rightarrow minM=2014\Leftrightarrow\hept{\begin{cases}x-2y+10=0\\y-8=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-16=-10\\y=8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=8\end{cases}}\)
Vậy \(minM=2014\Leftrightarrow\hept{\begin{cases}x=6\\y=8\end{cases}}\)
Ta có :
\(\left(-x+y-3\right)^4\ge0\)
\(\left(x-2y\right)^2\ge0\)
\(\Rightarrow P=\left(-x+y-3\right)^4+\left(x-2y\right)^2+2012\ge2012\)
Dấu " = " xảy ra khi \(\left(-x+y-3\right)^4=0\)vs \(\left(x-2y\right)^2=0\)
nên : * \(-x+y-3=0\)và \(x-2y=0\)
\(\Rightarrow y-x=3\)vs \(x=2y\)
\(\Rightarrow x=y-3\)(1) vs \(x=2y\)(2)
Từ (1) vs (2), ta có : \(y-3=2y\)
\(\Rightarrow y=3\)
\(\Rightarrow x=y-3=3-3=0\)
\(\Rightarrow Min\) \(P=2012\) khi x=0 vs y=3.
tìm GTNN của P=(X-2y)^2+(y-2012)^2012