Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left(x-1\right)\left(x-3\right)+11\)
\(=\left[\left(x-2\right)+1\right]\left[\left(x-2\right)-1\right]+11\)
\(=\left(x-2\right)^2-1^2+11\)
\(=\left(x-2\right)^2+10\ge0+10=10\)
\(\Rightarrow Min_N=10\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy ...
do \(\left(x-2\right)^2\ge o\forall x\)
\(\Rightarrow\left(x-2\right)^2+5\ge5\)
\(\Rightarrow\frac{6}{\left(x-2\right)^2+5}\ge\frac{6}{5}\)
Suy ra \(\frac{6}{\left(x-2\right)^2+5}\)đạt giá trị nhỏ nhất là \(\frac{6}{5}\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy
= \(4x^2\)+\(20x\)+\(25\)+\(6x^2\)- \(8x\)- \(x^2\)-\(22\)
=\(9x^2\)+\(12x\)+\(3\)
=\(9x^2\)+\(12x\)+\(3\)
=\(9x^2\)+\(12x\)+\(4\)-\(1\)
=(\(3x\)+\(2\))2-\(1\)
vì (\(3x\)+\(2\))2 >-0
=>.................-\(1\)>-(-1)
(>- là > hoặc =)
=> GTNN của M= -1 khi và chỉ khi \(3x\)+\(2\)=\(0\)
..................................
e) Ta có: \(2\left|x-\dfrac{1}{2}\right|\ge0\forall x\)
\(\Leftrightarrow2\left|x-\dfrac{1}{2}\right|+2021\ge2021\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
N=x^2-3x-x+3+11=x^2-4x+4+10=(x-2)^2+10
\(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+10\ge10\Rightarrow N_{min}=10\)
Đẳng thức khi x=2
ta có:(x-1)(x-3)+11
(x-1) lớn hơn hoặc bằng 1
---->x=1 ----->(x-1)(x-3)=0
0+11=11 --->x=1,(x-1)(x-3)+11 = 11