K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2016

N=x^2-3x-x+3+11=x^2-4x+4+10=(x-2)^2+10

\(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+10\ge10\Rightarrow N_{min}=10\)

Đẳng thức khi x=2

26 tháng 12 2016

ta có:(x-1)(x-3)+11

(x-1) lớn hơn hoặc bằng 1

---->x=1 ----->(x-1)(x-3)=0

0+11=11 --->x=1,(x-1)(x-3)+11 = 11

26 tháng 12 2016

giá trị nhỏ nhất của N là 11.

k mình nha

26 tháng 12 2016

Ta có :

\(\left(x-1\right)\left(x-3\right)+11\)

\(=\left[\left(x-2\right)+1\right]\left[\left(x-2\right)-1\right]+11\)

\(=\left(x-2\right)^2-1^2+11\)

\(=\left(x-2\right)^2+10\ge0+10=10\)

\(\Rightarrow Min_N=10\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy ...

18 tháng 4 2018

do \(\left(x-2\right)^2\ge o\forall x\)

\(\Rightarrow\left(x-2\right)^2+5\ge5\)

\(\Rightarrow\frac{6}{\left(x-2\right)^2+5}\ge\frac{6}{5}\)

Suy ra \(\frac{6}{\left(x-2\right)^2+5}\)đạt giá trị nhỏ nhất là \(\frac{6}{5}\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy

18 tháng 4 2018

cảm ơn bạn nhiu

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

\(4x^2\)+\(20x\)+\(25\)+\(6x^2\)\(8x\)\(x^2\)-\(22\)

=\(9x^2\)+\(12x\)+\(3\)

=\(9x^2\)+\(12x\)+\(3\)

=\(9x^2\)+\(12x\)+\(4\)-\(1\)

=(\(3x\)+\(2\))2-\(1\)

vì (\(3x\)+\(2\))2 >-0

=>.................-\(1\)>-(-1)

(>- là > hoặc =)

=> GTNN của M= -1 khi và chỉ khi \(3x\)+\(2\)=\(0\)

..................................

e) Ta có: \(2\left|x-\dfrac{1}{2}\right|\ge0\forall x\)

\(\Leftrightarrow2\left|x-\dfrac{1}{2}\right|+2021\ge2021\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)