K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2017

Ta có :

\(\left(-x+y-3\right)^4\ge0\)

\(\left(x-2y\right)^2\ge0\)

\(\Rightarrow P=\left(-x+y-3\right)^4+\left(x-2y\right)^2+2012\ge2012\)

Dấu " = " xảy ra khi \(\left(-x+y-3\right)^4=0\)vs \(\left(x-2y\right)^2=0\)

nên : * \(-x+y-3=0\)và \(x-2y=0\)

\(\Rightarrow y-x=3\)vs \(x=2y\)

\(\Rightarrow x=y-3\)(1)   vs \(x=2y\)(2)

Từ (1) vs (2), ta có : \(y-3=2y\)

\(\Rightarrow y=3\)

\(\Rightarrow x=y-3=3-3=0\)

\(\Rightarrow Min\) \(P=2012\) khi x=0 vs y=3.

6 tháng 3 2019

tìm GTNN của P=(X-2y)^2+(y-2012)^2012

25 tháng 9 2021

a) \(A=3\left|2x-\dfrac{3}{2}\right|+2021^0=3\left|2x-\dfrac{3}{2}\right|+1\ge1\)

\(minA=1\Leftrightarrow2x=\dfrac{3}{2}\Leftrightarrow x=\dfrac{3}{4}\)

b) \(B=2\left|x-6\right|+3\left(2y-1\right)^2+2021^0=2\left|x-6\right|+3\left(2y-1\right)^2+1\ge1\)

\(minB=1\Leftrightarrow\) \(\left\{{}\begin{matrix}x=6\\y=\dfrac{1}{2}\end{matrix}\right.\)

25 tháng 9 2021

\(A=3\left|2x-\dfrac{3}{2}\right|+1\ge1\\ A_{min}=1\Leftrightarrow2x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{4}\\ B=2\left|x-6\right|+3\left(2y-1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=\dfrac{1}{2}\end{matrix}\right.\)

NV
13 tháng 8 2021

\(C=\left|2x+1\right|+\left|-2y-1\right|\ge\left|2x+1-2y-1\right|=2\left|x-y\right|=4\)

\(C_{min}=4\) 

16 tháng 7 2019

\(A=4x\left(x+y-2\right)^2+\left|2y-3\right|+1,5\)

Ta có:

  \(4x\left(x+y-2\right)^2\ge0\)

\(\left|2y-3\right|\ge0\)

\(\Leftrightarrow4x\left(x+y-2\right)^2+\left|2y-3\right|\ge0\)

\(\Leftrightarrow4x\left(x+y-2\right)^2+\left|2y-3\right|+1,5\ge1,5\)

Dấu = xảy ra khi : \(x+y-2=0\Leftrightarrow x+y=2\)

                              \(2y-3=0\Leftrightarrow y=\frac{3}{2}\Leftrightarrow x=\frac{1}{2}\)

Vậy .....................

28 tháng 11 2016

\(A=\left|x-3\right|+\left|y+3\right|+2016\)

\(\left|x-3\right|\ge0\)

\(\left|y+3\right|\ge0\)

\(\Rightarrow\left|x-3\right|+\left|y+3\right|+2016\ge2016\)

Dấu ''='' xảy ra khi \(x-3=y+3=0\)

\(x=3;y=-3\)

\(MinA=2016\Leftrightarrow x=3;y=-3\)

\(\left(x-10\right)+\left(2x-6\right)=8\)

\(x-10+2x-6=8\)

\(3x=8+10+6\)

\(3x=24\)

\(x=\frac{24}{3}\)

x = 8

11 tháng 12 2023

Câu 2:

a: 10km=10000m

10000m dây đồng có cân nặng là:

\(47:5\cdot10000=94000\left(g\right)\)

b: 300g=0,3kg=0,003 tạ

0,003 tạ nặng:

\(2,5:1\cdot0,003=\dfrac{3}{400}\left(kg\right)\)

Câu 1:

a:

\(\left|1-2x\right|>=0\forall x\)

=>\(3\left|1-2x\right|>=0\forall x\)

=>\(3\left|1-2x\right|-5>=-5\forall x\)

=>\(A>=-5\forall x\)

Dấu '=' xảy ra khi 1-2x=0

=>2x=1

=>x=1/2

Vậy: \(A_{Min}=-5\) khi x=1/2

b: \(2x^2>=0\forall x\)

=>\(2x^2+1>=1\forall x\)

=>\(\left(2x^2+1\right)^4>=1^4=1\forall x\)

=>\(\left(2x^2+1\right)^4-3>=1-3=-2\forall x\)

=>B>=-2\(\forall\)x

Dấu '=' xảy ra khi x=0

c: \(\left|x-\dfrac{1}{2}\right|>=0\forall x\)

\(\left(y+2\right)^2>=0\forall y\)

Do đó: \(\left|x-\dfrac{1}{2}\right|+\left(y+2\right)^2>=0\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+2=0\end{matrix}\right.\)

=>x=1/2 và y=-2

30 tháng 11 2017

P >= 0

Dấu "=" xảy ra <=> x-2y=0 và y-2012=0

<=> x=4024 và y=2012

Vậy GTNN của P = 0 <=> x = 4024 và y = 2012

k mk nha

30 tháng 11 2017

P >= 0

Dấu "=" xảy ra <=> x-2y=0 và y-2012=0

<=> x=4024 và y=2012

Vậy GTNN của P = 0 <=> x = 4024 và y = 2012

k mk nha