\(\sqrt{x^2-2ax+2a^2}\)+ \(\sqrt{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Chứng minh rằng \(5^{8^{2006}}\) \(+\)\(5\) chia hết cho 62. Tìm nghiệm nguyên dương của phương trình \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)3.Cho biểu thức:P= \(\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab-1}}-1\right):\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}-\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\right)\)a) Rút gọn Pb) Cho a+b =1. Tìm giá trị nhỏ nhất của P4. Cho a,b,c là các số thực dương thỏa mãn điều kiện...
Đọc tiếp

1. Chứng minh rằng \(5^{8^{2006}}\) \(+\)\(5\) chia hết cho 6

2. Tìm nghiệm nguyên dương của phương trình \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

3.Cho biểu thức:

P= \(\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab-1}}-1\right):\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}-\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\right)\)

a) Rút gọn P

b) Cho a+b =1. Tìm giá trị nhỏ nhất của P

4. Cho a,b,c là các số thực dương thỏa mãn điều kiện abc = 1.Tìm giá trị nhỏ nhất của biểu thức

P= \(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)

5. Tìm các số nguyên x,y thỏa mãn hằng đẳng thức:

\(2xy^2+x+y+1=x^2+2y^2+xy\)

6. Đa thức \(F\left(x\right)\)chia cho \(x+1\)dư 4, chia cho \(x^2+1\)dư \(2x+3\). Tìm đa thức dư khi \(F\left(x\right)\) chia cho \(\left(x+1\right)\left(x^2+1\right)\)

Giúp em ạ. Giải từng câu cũng được ạ. Mai em nộp bài rồi. 

1
9 tháng 2 2017

\(P=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{a}+\frac{1}{c}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\)

Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow xyz=1\Rightarrow P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có: 

\(P\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z\Leftrightarrow a=b=c=1\)

Cần cách khác thì nhắn cái

18 tháng 8 2020

Bn viet bây à

18 tháng 8 2020

Giúp mik đi

19 tháng 7 2020

Bài này cho thêm điều kiện a, b, c dương

Áp dụng BĐT Bunyakovsky dạng phân thức, ta được: \(E=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\)\(\frac{\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{3}}{2}\ge\frac{3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)}{6}=\frac{1}{2}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

12 tháng 3 2019

Help me!!!

16 tháng 10 2019

a, x(a - b) + (a - b)

= (x + 1)(a - b)

b, x(a + b) - a - b

= x(a + b) - (a + b)

= (x - 1)(a + b)

c, 10ax - 5ay - 2x + y

=  5a(2x - y) - (2x - y)

= (5a - 1)(2x - y)

d, 2a^2x - 5by - 5a^2y + 2bx

= 2x(a^2 + b) - 5y(b + a^2)

= (2a - 5y)(a^2 + b)

làm tiếp:

2ax2 - bx2 - 2ax +bx +4a-2b

= x2(2a-b) - x(2a-b) +2(2a-b)

=(2a-b)(x2-x+2)

13 tháng 6 2018

Bài 1.a) Ta có : \(\left(2a+2b\right)\left(\dfrac{1}{4a}+\dfrac{1}{4b}\right)=2.\dfrac{1}{4}\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=\dfrac{1}{2}\left(2+\dfrac{a}{b}+\dfrac{b}{a}\right)=1+\dfrac{1}{2}\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\left(1\right)\)Áp dụng BĐT Cauchy cho các số dương , ta có :

\(a^2+b^2\)\(2ab\)

\(\dfrac{a}{b}+\dfrac{b}{a}\) ≥ 2 ( 2)

Từ ( 1; 2) ⇒ \(\left(2a+2b\right)\left(\dfrac{1}{4a}+\dfrac{1}{4b}\right)\) ≥ 2

b) Áp dụng BĐT Cauchy cho các số dương , ta có :

\(a+b\)\(2\sqrt{ab}\) ( 1 )

\(b+c\)\(2\sqrt{bc}\) ( 2 )

\(c+a\)\(2\sqrt{ac}\) ( 3 )

Cộng từng vế của ( 1 ; 2 ; 3) , ta có :

\(2\left(a+b+c\right)\)\(2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)
\(a+b+c\)\(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)