K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 11 2021

\(f\left(x\right)=x+\dfrac{2}{x-1}=x-1+\dfrac{2}{x-1}+1\ge2\sqrt{\dfrac{2\left(x-1\right)}{x-1}}+1=2\sqrt{2}+1\)

\(f\left(x\right)_{min}=2\sqrt{2}+1\)

1 tháng 11 2021

Ta có: \(f\left(x\right)=x+\dfrac{2}{x-1}=x-1+\dfrac{2}{x-1}+1\)

Vì x > 1 nên x - 1 > 0 và \(\dfrac{2}{x-1}>0\)

Áp dụng bất đẳng thức cô-si cho hai số dương \(x-1;\dfrac{2}{x-1}\) ta được:

\(x-1+\dfrac{2}{x-1}\ge2.\sqrt{x-1.\dfrac{2}{x-1}}=2\sqrt{2}\)

\(=>f\left(x\right)=x-1+\dfrac{2}{x-1}+1\ge2\sqrt{2}+1\)

⇒ Giá trị bé nhất của f(x) là 2√2 + 1 .

Dấu “=” xảy ra khi và chỉ khi x - 1 = \(\dfrac{2}{x-1}\) và x > 1 ⇔ x = 1 + √2

\(f\left(x\right)=x\dfrac{2}{x-1}=x-1+\dfrac{2}{x-1}+1\)

NV
14 tháng 12 2020

\(f\left(x\right)=\dfrac{4}{x}+\dfrac{x-1+1}{1-x}=\dfrac{4}{x}+\dfrac{1}{1-x}-1\)

\(f\left(x\right)\ge\dfrac{\left(2+1\right)^2}{x+1-x}-1=8\)

\(f\left(x\right)_{min}=8\) khi \(x=\dfrac{2}{3}\)

11 tháng 5 2022

X=2 nữa thầy ơi

14 tháng 1 2020

f(x) = x3 +3/x = x3 + 1/x +1/x +1/x 

cô si 4 số làm mất x là xong

13 tháng 4 2018

Đáp án C

18 tháng 10 2021

Dễ thấy: \(f\left(x\right)=\left(x+m-1\right)^2-m^2+5m-6\ge-m^2+5m-6\)

Giá trị nhỏ nhất của f(x) đạt lớn nhất tức \(-m^2+5m-6\) đạt lớn nhất

Mà \(g\left(m\right)=-m^2+5m-6=-\left(m-\dfrac{5}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

g(m) đạt lớn nhất khi m=5/2

m cần tìm là 5/2