K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 12 2020

\(f\left(x\right)=\dfrac{4}{x}+\dfrac{x-1+1}{1-x}=\dfrac{4}{x}+\dfrac{1}{1-x}-1\)

\(f\left(x\right)\ge\dfrac{\left(2+1\right)^2}{x+1-x}-1=8\)

\(f\left(x\right)_{min}=8\) khi \(x=\dfrac{2}{3}\)

11 tháng 5 2022

X=2 nữa thầy ơi

14 tháng 1 2020

f(x) = x3 +3/x = x3 + 1/x +1/x +1/x 

cô si 4 số làm mất x là xong

14 tháng 3 2021

Ta có \(f\left(x\right)-6=\dfrac{2x^3+4-6x}{x}=\dfrac{2\left(x-1\right)^2\left(x+2\right)}{x}\ge0\) nên \(f\left(x\right)\ge6\).

Đẳng thức xảy ra khi và chỉ khi x = 1.

14 tháng 3 2021

Cách khác thì dùng AM - GM:

\(f\left(x\right)=2x^2+\dfrac{4}{x}=2x^2+\dfrac{2}{x}+\dfrac{2}{x}\ge3\sqrt[3]{2x^2.\dfrac{2}{x}.\dfrac{2}{x}}=6\).

Xảy ra đẳng thức khi x = 1.

28 tháng 12 2020

ta có: \(f_{\left(x\right)}=\frac{x}{2}+\frac{2}{x-1}=\frac{x-1}{2}+\frac{2}{x-1}+\frac{1}{2}\)

AD cô-si ta được \(\frac{x-1}{2}+\frac{2}{x-1}\ge2\)( dấu "=" xảy ra khi x=3)

=> \(f_{\left(x\right)}\ge2+\frac{1}{2}=\frac{5}{2}\)

=> Min f(x) =5/2 tại x =3 

NV
7 tháng 1 2021

a.

\(y=\dfrac{4}{x}+\dfrac{1}{1-x}-1\ge\dfrac{\left(2+1\right)^2}{x+1-x}-1=8\)

\(y_{min}=8\) khi \(x=\dfrac{4}{5}\)

b.

\(y=\dfrac{1}{x}+\dfrac{1}{1-x}\ge\dfrac{4}{x+1-x}=4\)

\(y_{min}=4\) khi \(x=\dfrac{1}{2}\)