K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2019

\(A=\left|\frac{1}{3}x+4\right|+\frac{2}{3}\)

\(\left|\frac{1}{3}x+4\right|\ge0\Rightarrow\left|\frac{1}{3}x+4\right|+\frac{2}{3}\ge\frac{2}{3}\)

\(\Rightarrow A\ge\frac{2}{3}\)

dấu "=" xảy ra khi : 

|1/3x + 4| = 0

=> 1/3x + 4 = 0

=> 1/3x = -4

=> x = -12

\(B=\left|x-6\right|+\left|x+\frac{5}{4}\right|\)

\(\left|x-6\right|\ge6-x\)

\(\left|x+\frac{5}{4}\right|\ge x+\frac{5}{4}\)

\(\Rightarrow\left|x-6\right|+\left|x+\frac{5}{4}\right|\ge6-x+x+\frac{5}{4}\)

\(\Rightarrow B\ge\frac{29}{4}\)

dấu "=" xảy ra khi : 

x - 6 < 0 => x < 6

x + 5/4 > 0 => x > -5/4 

vậy -5/4 < x < 6

28 tháng 6 2015

1) \(\left|2x+5\right|\ge21\Rightarrow2x+5\ge21\)hoặc \(2x+5<-21\)<=> \(x\ge8\) hoặc \(x<-13\)

2) 

a) |2x-3|>=0 => A>=0-5=-5 => Min A=-5 <=> x=3/2

b) \(\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|=\left|2\right|=2\Rightarrow B\ge2+5=7\)=> MinB=7 <=>x=1

3)

\(\left|2x-1\right|\ge0\Rightarrow-\left|2x-1\right|\le0\Leftrightarrow A\le0+7=7\Rightarrow MaxA=7\Leftrightarrow x=-\frac{1}{2}\)

b) 

th1: nếu x<-3/2 => B=-2x-3+2x+2=-1

th2: nếu \(-\frac{3}{2}\le x\le-1\)=> B=2x+3+2x+2=4x+5

ta có:\(-\frac{3}{2}\le x\le-1\Rightarrow-6\le4x\le-4\Leftrightarrow-1\le4x+5\le1\Rightarrow-1\le B\le1\)

th3: nếu x>-1 => B=2x+3-2x-2=1=>

Max B=1 <=> x>-1 hoặc \(-\frac{3}{2}\le x\le-1\)

28 tháng 6 2015

2b) Áp dụng bất đẳng thức giá trị tuyệt đối: |a| + |b|  \(\ge\) |a + b|. Dấu "=" xảy ra khi tích a.b \(\ge\) 0 

Ta có: B = |2x - 1| + |3 - 2x| + 5  \(\ge\) |2x - 1+3 - 2x| + 5  = |2| + 5 = 7

=> Min B = 7 khi

(2x - 1)( 3 - 2x) \(\ge\) 0 => (2x - 1)(2x - 3) \(\le\) 0 

Mà 2x - 1 > 2x - 3 nên 2x - 1 \(\ge\) 0 và 2x - 3 \(\le\)  0 

=> x \(\ge\) 1/2 và x  \(\le\) 3/2

 

11 tháng 12 2015

H=/3-x/ +/4+x/ 》|3-x+4+x|=7

Min H=7 

1 tháng 3 2016

giúp với mình sắp nạp rồi

13 tháng 12 2019

Câu hỏi của tam phung - Toán lớp 7 - Học toán với OnlineMath

24 tháng 11 2016

Có: \(\begin{cases}2.\left|x-3\right|\ge0\\\left(6-3y\right)^4\ge0\end{cases}\forall x;y\)

Do đó, \(2.\left|x-3\right|+\left(6-3y\right)^4-2\ge-2\)

Dấu "=" xảy ra khi \(\begin{cases}2.\left|x-3\right|=0\\\left(6-3y\right)^4=0\end{cases}\)\(\Rightarrow\begin{cases}\left|x-3\right|=0\\6-3y=0\end{cases}\)\(\Rightarrow\begin{cases}x-3=0\\6-3y=0\end{cases}\)

\(\Rightarrow\begin{cases}x=3\\3y=6\end{cases}\)\(\Rightarrow\begin{cases}x=3\\y=2\end{cases}\)

Vậy GTNN của 2.|x - 3| + (6 - 3y)4 - 2 là -2 khi x = 3; y = 2

24 tháng 11 2016

Cảm ơn bn nhiều!

21 tháng 6 2018

Vì \(\hept{\begin{cases}|x-3|\\|4+x|\end{cases}\ge0}\) nên minH = 0