Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=2x^2-8x+1=2\left(x^2-4x+\frac{1}{2}\right)=2\left(x^2-4x+4-\frac{7}{2}\right)=2\left(x-2\right)^2-7\)
Vì: \(2\left(x-2\right)^2-7\ge-7\forall x\)
=> Giá trị nhỏ nhất của B là - 7 tại \(2\left(x-2\right)^2=0\Rightarrow x=2\)
=.= hok tốt!!
+) \(A=x^2+2x-9=x^2+2x+1-10=\left(x+1\right)^2-10\ge-10\)
Min A = -10 \(\Leftrightarrow x=-1\)
+) \(B=x^2+5x-1=x^2+5x+\frac{25}{4}-\frac{29}{4}=\left(x+\frac{5}{2}\right)^2-\frac{29}{4}\ge\frac{-29}{4}\)
Min B = -29/4 \(\Leftrightarrow x=\frac{-5}{2}\)
+) \(C=x^2+4x=x^2+4x+4-4=\left(x+2\right)^2-4\ge-4\)
Min C = -4 \(\Leftrightarrow x=-2\)
+) \(D=x^2-8x+17=x^2-8x+16+1=\left(x-4\right)^2+1\ge1\)
Min D = 1 \(\Leftrightarrow x=4\)
+) \(E=x^2-7x+1=x^2-7x+\frac{49}{4}-\frac{45}{4}=\left(x-\frac{7}{2}\right)-\frac{45}{4}\ge-\frac{45}{4}\)
Min E = -45/4 \(\Leftrightarrow x=\frac{7}{2}\)
A = x2 + 2x - 9
= ( x2 + 2x + 1 ) - 10
= ( x + 1 )2 - 10 ≥ -10 ∀ x
Đẳng thức xảy ra <=> x + 1 = 0 => x = -1
=> MinA = -10 <=> x = -1
B = x2 + 5x - 1
= ( x2 + 5x + 25/4 ) - 29/4
= ( x + 5/2 )2 - 29/4 ≥ -29/4 ∀ x
Đẳng thức xảy ra <=> x + 5/2 = 0 => x = -5/2
=> MinB = -29/4 <=> x = -5/2
C = x2 + 4x
= ( x2 + 4x + 4 ) - 4
= ( x + 2 )2 - 4 ≥ -4 ∀ x
Đẳng thức xảy ra <=> x + 2 = 0 => x = -2
=> MinC = -4 <=> x = -2
D = x2 - 8x + 17
= ( x2 - 8x + 16 ) + 1
= ( x - 4 )2 + 1 ≥ 1 ∀ x
Đẳng thức xảy ra <=> x - 4 = 0 => x = 4
=> MinD = 1 <=> x = 4
E = x2 - 7x + 1
= ( x2 - 7x + 49/4 ) - 45/4
= ( x - 7/2 )2 - 45/4 ≥ -45/4 ∀ x
Đẳng thức xảy ra <=> x - 7/2 = 0 => x = 7/2
=> MinE = -45/4 <=> x = 7/2
\(A=2x^2-8x+10\)
\(\Leftrightarrow A=2\left(x^2-4x+5\right)\)
\(\Leftrightarrow A=2\left(x^2-2.2.x+4+1\right)\)
\(\Leftrightarrow A=2\left(x-2\right)^2+2\ge2\)
Dấu " = " xảy ra khi và chỉ khi
\(2\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy min A = 2 <=> x = 2
\(A=x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1\forall x\)
Dấu "=" xảy ra <=> x = 3
Vậy MinA = 1
\(B=5x^2-10x+3=5\left(x^2-2x+1\right)-2=5\left(x-1\right)^2-2\ge-2\forall x\)
Dấu "=" xảy ra <=> x = 1
Vậy MinB = -2
\(C=2x^2+8x+y^2-10y+43=2\left(x^2+4x+4\right)+\left(y^2-10y+25\right)+10=2\left(x+2\right)^2+\left(y-5\right)^2+10\ge10\forall x,y\)
Dấu "=" xảy ra <=> x = -2 ; y = 5
Vậy MinC = 10
\(A=x^2-6x+10\)
\(=\left(x^2-6x+9\right)+1\)
\(=\left(x-3\right)^2+1\ge1\forall x\)
Dấu"=" xảy ra khi \(x-3=0\Leftrightarrow x=3\)
Vậy \(Min_A=1\Leftrightarrow x=3\)
b,\(B=5x^2-10x+3\)
\(=5\left(x^2-2x+1\right)-2\)
\(=5\left(x-1\right)^2-2\ge-2\forall x\)
Dấu"=" xảy ra khi \(x-1=0\Leftrightarrow x=1\)
Vậy \(Min_B=-2\Leftrightarrow x=1\)
c,\(C=2x^3+8x+y^2-10+43\)
\(=2x^2+8x+8+y^2-10y+25+10\)
\(=2\left(x^2+4x+4\right)+\left(y^2-10y+25\right)+10\)
\(=2\left(x+2\right)^2+\left(y-5\right)^2+10\ge10\forall x,y\)
Dấu"=" xảy ra khi \(\orbr{\begin{cases}x+2=0\\y-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\y=5\end{cases}}}\)
Vậy \(Min_C=10\Leftrightarrow x=-2;y=5\)
a, B=x2+4xy+y2+x2-8x+16+2012
B=(x+y) 2+(x-4)2+2012
Vậy B >=2012 ( Dấu "=" xảy ra khi x=4,y=-4)
b làm tương tự
c, 9x2+6x+1+y2-4y+4+x2-4xz+4z2=0
(3x+1)2+(y-4)2+(x-2z)2=0
Vậy 3x+1=0 => x = -1/3
y-4=0 => y=4
x-2z=0 thế x=-1/3 ta được. -1/3-2z=0 => z = -1/6
Bạn nhớ ghi lại đề minh không ghi đề
a) \(B=2x^2+y^2+2xy-8x+2028\)
\(=\left(x^2+2xy+y^2\right)+\left(x^2-8x+4^2\right)+2012=\left(x+y\right)^2+\left(x-4\right)^2+2012\ge2012\)
\(MinB=2012\Leftrightarrow\hept{\begin{cases}x=4\\y=-4\end{cases}}\)
b)\(C=x^2+5y^2+4xy+2x+2y-7\)
\(=\left(x^2+4xy+4y^2\right)+\left(2x+4y\right)+1+\left(y^2-2y+1\right)-9\)
\(=\left(\left(x+2y\right)^2+2\left(x+2y\right)+1\right)+\left(y-1\right)^2-9=\left(x+2y+1\right)^2+\left(y-1\right)^2-9\ge9\)
\(MinC=-9\Leftrightarrow\hept{\begin{cases}x+2y+1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
c)\(10x^2+y^2+4z^2+6x-4y-4xz+5=0\)
\(\Leftrightarrow\left(9x^2+6x+1\right)+\left(y^2-4y+4\right)+\left(x^2-4xz+4z^2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)^2+\left(y-2\right)^2+\left(x-2z\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}3x+1=0\\y-2=0\\x-2z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{3}\\y=2\\z=-\frac{1}{6}\end{cases}}\)
a) Ta có: \(2x^2+2x+3=\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.\frac{1}{\sqrt{2}}+\frac{1}{2}+\frac{5}{2}\)
\(=\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)
\(\Rightarrow S\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)
Vậy \(S_{max}=\frac{6}{5}\Leftrightarrow\sqrt{2}x+\frac{1}{\sqrt{2}}=0\Leftrightarrow x=-\frac{1}{2}\)
b) Ta có: \(3x^2+4x+15=\left(\sqrt{3}x\right)^2+2.\sqrt{3}x.\frac{2}{\sqrt{3}}+\frac{4}{3}+\frac{41}{3}\)
\(=\left(\sqrt{3}x+\frac{2}{\sqrt{3}}\right)^2+\frac{41}{3}\ge\frac{41}{3}\)
\(\Rightarrow T\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)
Vậy \(T_{max}=\frac{15}{41}\Leftrightarrow\sqrt{3}x+\frac{2}{\sqrt{3}}=0\Leftrightarrow x=\frac{-2}{3}\)
c) Ta có: \(-x^2+2x-2=-\left(x^2-2x+1\right)-1\)
\(=-\left(x-1\right)^2-1\le-1\)
\(\Rightarrow V\ge\frac{1}{-1}=-1\)
Vậy \(V_{min}=-1\Leftrightarrow x-1=0\Leftrightarrow x=1\)
d) Ta có: \(-4x^2+8x-5=-\left(4x^2-8x+5\right)\)
\(=-\left(4x^2-8x+4\right)-1\)
\(=-\left(2x-2\right)^2-1\le-1\)
\(\Rightarrow X\ge\frac{2}{-1}=-2\)
Vậy \(X_{min}=-2\Leftrightarrow2x-2=0\Leftrightarrow x=1\)
Ta có : x2 + 100x + 100
= x2 + 2.50.x + 2500 - 2400
= (x + 50)2 - 2400
Vì \(\left(x+50\right)^2\ge0\forall x\)
Nên : (x + 50)2 - 2400 \(\ge-2400\forall x\)
Vậy Amin = -2400 khi x = -50
\(E=2x^2-8x+1\)
\(E=2\left(x^2-4x+\frac{1}{2}\right)\)
\(E=2\left(x^2-2\cdot x\cdot2+4-\frac{7}{2}\right)\)
\(E=2\left[\left(x-2\right)^2-\frac{7}{2}\right]\)
\(E=2\left(x-2\right)^2-7\ge-7\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy....