Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\hept{\begin{cases}\left|7x-5y\right|\ge0\\\left|2x-3x\right|\ge0\\\left|xy+yz+zx-2000\right|\ge0\end{cases}}\)
=> 1 + |7x - 5y| + |2z - 3x| + |xy + yz + zx - 2000| \(\ge1\)
=> \(\frac{1}{1+\left|7x-5y\right|+\left|2z-3x\right|+\left|xy+yz+zx-2000\right|}\le1\)
Dấu "=" xảy ra <=> 1 + |7x - 5y| + |2z - 3x| + |xy + yz + zx - 2000| = 1
=> |7x - 5y| + |2z - 3x| + |xy + yz + zx - 2000| = 0
=> \(\hept{\begin{cases}7x=5y\\2z=3x\\xy+yz+zx-2000=0\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{y}{7}\\\frac{x}{2}=\frac{z}{3}\\xy+yz+zy=2000\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{10}=\frac{y}{14}\\\frac{x}{10}=\frac{z}{15}\\xy+yz+zy=2000\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{14}=\frac{z}{15}\\xy+yz+zx=2000\left(1\right)\end{cases}}\)
Đặt \(\frac{x}{10}=\frac{y}{14}=\frac{z}{15}=k\Rightarrow\hept{\begin{cases}x=10k\\y=14k\\z=15k\end{cases}\left(2\right)}\)
Thay (2) vào (1) ta có :
10.14.k2 + 14.15.k2 + 10.15.k2 = 2000
=> 140k2 + 210.k2 + 150.k2 = 2000
=> k2(140 + 210 + 150) = 2000
=> k2.500 = 2000
=> k2 = 4
=> k2 = 22
=> \(k=\pm2\)
Nếu k = 2
=> x = 20 ; y = 28 ; z = 30
Nếu k = - 2
=> x = - 20 ; y = - 28 ; z = - 30
Vậy GTLN của M là 1 khi các 3 số (x ; y ; z) thỏa mãn là : (20 ; 28 ; 30) ; (- 20 ; - 28 ; - 30)
Ta có \(x+y+z=1\Rightarrow x+y=1-z,\) ta có:
\(\frac{x+y}{\sqrt{xy+z}}=\frac{1-z}{\sqrt{xy+1-x-y}}=\frac{1-z}{\sqrt{\left(1-x\right)\left(1-y\right)}}\)
\(\frac{y+z}{\sqrt{yz+x}}=\frac{1-x}{\sqrt{yz+1-y-z}}=\frac{1-x}{\sqrt{\left(1-y\right)\left(1-z\right)}}\)
\(\frac{z+x}{\sqrt{zx+y}}=\frac{1-y}{\sqrt{zx+1-x-z}}=\frac{1-y}{\sqrt{\left(1-x\right)\left(1-z\right)}}\)
Khi đó \(P=\frac{x+y}{\sqrt{xy+z}}+\frac{y+z}{\sqrt{yz+x}}+\frac{z+x}{\sqrt{zx+y}}=\frac{1-z}{\sqrt{\left(1-x\right)\left(1-y\right)}}+\frac{1-x}{\sqrt{\left(1-y\right)\left(1-z\right)}}+\frac{1-y}{\sqrt{\left(1-x\right)\left(1-z\right)}}\)
\(\ge3\sqrt[3]{\frac{1-z}{\left(1-x\right)\left(1-y\right)}\times\frac{1-x}{\left(1-y\right)\left(1-z\right)}\times\frac{1-y}{\left(1-x\right)\left(1-z\right)}}=3\)
Vậy \(MinP=3\) đạt được khi \(x=y=z=\frac{1}{3}\)
\(P=\dfrac{x+y}{\sqrt{xy+z}}+\dfrac{y+z}{\sqrt{yz+x}}+\dfrac{z+x}{\sqrt{xz+y}}\)
\(P=\dfrac{x+y}{\sqrt{xy+\left(x+y+z\right)z}}+\dfrac{y+z}{\sqrt{yz+\left(x+y+z\right)x}}+\dfrac{x+z}{\sqrt{zx+\left(x+y+z\right)y}}\)
\(P=\dfrac{x+y}{\sqrt{xy+xz+yz+z^2}}+\dfrac{y+z}{\sqrt{yz+x^2+xy+xz}}+\dfrac{x+z}{\sqrt{xz+xy+y^2+yz}}\)
\(P=\dfrac{x+y}{\sqrt{\left(x+z\right)\left(y+z\right)}}+\dfrac{y+z}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\dfrac{x+z}{\sqrt{\left(x+y\right)\left(y+z\right)}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow P\ge3\sqrt[3]{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{\sqrt{\left(x+y\right)^2\left(y+z\right)^2\left(x+z\right)^2}}}=3\sqrt[3]{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}}=3\)
\(\Rightarrow P\ge3\)
Vậy \(P_{min}=3\)
Dấu " = " xảy ra khi \(x=y=z=\dfrac{1}{3}\)
Ta có |7x – 5y| 0; |2z – 3x| 0 và | xy + yz + zx - 2000| 0
Nên A = |7x – 5y| + |2z – 3x| +|xy + yz + zx - 2000| 0
Mà A = 0 khi và chỉ khi
|7x – 5y| = |2z – 3x| = |xy + yz + zx - 2000| = 0
Có: |7x – 5y| = 0 ó 7x = 5y ó
|2z – 3x| = 0 ó
|xy + yz + zx - 2000| = 0 ó xy + yz + zx = 2000
Từ đó tìm được
A 0, mà A = 0 ó (x,y,z) = (20;28;30) hoặc (x,y,z)= (-20;-28;-30)
Vậy MinA = 0 ó (x,y,z) = (20;28;30) hoặc (x,y,z)= (-20;-28;-30)