K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2021

GTNN là -3 khi x =-2

27 tháng 10

đây là những món quà mà bn sẽ nhận đc: 1: áo quần 2: tiền 3: đc nhiều người yêu quý 4: may mắn cả 5: luôn vui vẻ trong cuộc sống 6: đc crush thích thầm 7: học giỏi 8: trở nên xinh đẹp phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người,

 

11 tháng 11 2023

\(P=\left(x-2\right)^2+\left|y-x\right|+3\)

\(\left(x-2\right)^2>=0\forall x\)

\(\left|y-x\right|>=0\forall x,y\)

Do đó: \(\left(x-2\right)^2+\left|y-x\right|>=0\forall x,y\)

=>\(\left(x-2\right)^2+\left|y-x\right|+3>=3\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\y-x=0\end{matrix}\right.\)

=>x=y=2

27 tháng 10

đây là những món quà mà bn sẽ nhận đc: 1: áo quần 2: tiền 3: đc nhiều người yêu quý 4: may mắn cả 5: luôn vui vẻ trong cuộc sống 6: đc crush thích thầm 7: học giỏi 8: trở nên xinh đẹp phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người,

 

5 tháng 2 2017

Mấy bạn kia làm sai hết rồi !!

P = |2013 - x| + |2014 - x| = |2013 - x| + |x - 2014|

Áp dụng bđt |a| + |b| ≥ |a + b| ta có :

P = |2013 - x| + |x - 2014| ≥ |2013 - x + x - 2014| =|- 1| = 1

Dấu "=" xảy ra <=> (2013 - x)(x - 2014) ≥ 0 <=> 2013 ≤ x ≤ 2014

Dậy gtnn của P là 1 <=> 2013 ≤ x ≤ 2014

4 tháng 2 2017

\(\left|2013-x\right|+\left|2014-x\right|\ge\left|2013-x+2014-x\right|\)

\(\left|2013-x\right|+\left|2014-x\right|\ge\left|4027\right|\)

\(\left|2013-x\right|+\left|2014-x\right|\ge4027\)

\(\Rightarrow\)\(Min_P=4027\)

a: P(x)=5x^2-4x+7

Sửa đề: Q(x)=-5x^3-x^2+4x-5

Q(x)+P(x)+5x^2-2=0

=>5x^2-4x+7-5x^3-x^2+4x-5+5x^2-2=0

=>5x^3=0

=>x=0

NV
19 tháng 5 2021

\(P=x^2-6x+9+2\)

\(P=\left(x-3\right)^2+2\)

Do \(\left(x-3\right)^2\ge0\) ;\(\forall x\)

\(\Rightarrow P\ge0+2\Rightarrow P\ge2\)

Vậy \(P_{min}=2\) khi \(x=3\)

30 tháng 9 2016

\(A=2x-2x^2-5\)

   \(=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\le-\frac{9}{2}\)

Dấu " = " xảy ra khi và chỉ khi \(x-\frac{1}{2}=0\)

                                                  \(\Leftrightarrow x=\frac{1}{2}\)

Vậy \(Max_A=-\frac{9}{2}\) khi và chỉ khi \(x=\frac{1}{2}\)