Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(A=3\left|2x-1\right|-5\)
Ta có: \(\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|-5\ge-5\)
Để A nhỏ nhất thì \(3\left|2x-1\right|-5\)nhỏ nhất
Vậy \(Min_A=-5\)
a) Bài này cần bảng xét dấu nhé bạn. Câu a bạn tìm được x = 0,5 và x = 3,5
b) Mình không hiểu bạn cần tìm P(x) nhỏ nhất hay x nhỏ nhất.
Với x nhỏ nhất, x có thể là bao nhiêu cũng được.
Với P(x) nhỏ nhất, bạn sẽ đổi dấu giá trị tuyệt đối mà bình thường khi không có dấu giá trị tuyệt đối thì nó sẽ luôn luôn bé hơn.
Theo bài trên, có: 2x - 6 < 2x - 2
=> P(x) = | 2x - 6 | + | 2x - 2 |
Ta có một công thức như sau: |a| + |b| >= |a + b|
Dấu bằng xảy ra khi a . b dương.
Ta có: P(x) = | 2x - 6 | +| 2x - 2 | = | 6 - 2x | + | 2x - 2 | \(\ge\) | 6 - 2x + 2x - 2 | = 4
=> P(x) \(\ge\) 4
Vì P(x) min => P(x) = 4
Vậy Min P(x) = 4
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
1) \(2x=3y=5z\Leftrightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-2y}{15-2\cdot10}=\frac{x-2y}{-5}\)
*TH1: Nếu x-2y = 5
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{5}{-5}=-1\)
\(\Rightarrow\hept{\begin{cases}x=-15\\y=-10\\z=-6\end{cases}}\)\(\Rightarrow3x-2z=3\left(-15\right)-2\cdot6=-45-12=-57\)
*TH2: Nếu x-2y = -5
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=1\)\(\Rightarrow\hept{\begin{cases}x=15\\y=10\\z=6\end{cases}\Rightarrow3x-2z=3\cdot15-2\cdot6=45-12=33}\)
Vậy giá trị nhỏ nhất của 3x - 2z là -57.
2)\(B=\frac{x^2+15}{x^2+3}=1+\frac{12}{x^2+3}\le1+\frac{12}{3}=5\)
Dấu "=" xảy ra khi x = 0.
Vì \(2x⋮x\Rightarrow-5⋮x\)
\(\Rightarrow x\inƯ\left(-5\right)=\left\{5;-5\right\}\)
Thì Mmin = 1
\(M=\frac{2x-5}{x}=\frac{2x}{x}-\frac{5}{x}=2-\frac{5}{x}\)
de M dat gia tri nho nhat thi 5/x nho nhat
=> x = -1
kl_
Phương Uyên 2-(-5)=+7(âm - âm=dương)
Để \(M_{min}\Rightarrow\left(2-\frac{5}{x}\right)_{min}\Rightarrow\left(\frac{5}{x}\right)_{max}\)
ta thấy 5>0 và không đổi => x>0
mà để \(\left(\frac{5}{x}\right)max\Rightarrow x_{min}\text{ mà }x>0\Rightarrow x=1\left(x\in Z\right)\)
Vậy ....
p/s: nếu x=-1 =>\(2-\frac{5}{x}=2-\frac{5}{-1}=2+5=7\)