K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2018

\(2x^2+y^2-2xy+4x+1=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)-3\)

                                                  \(=\left(x-y\right)^2+\left(x+2\right)^2+\left(-3\right)\)

Vì \(\left(x-y\right)^2\ge0;\left(x+2\right)^2\ge0\)

\(\Rightarrow\left(x-y\right)^2+\left(x+2\right)^2+\left(-3\right)\ge-3\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x+2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\x=-2\end{cases}\Leftrightarrow}x=y=-2}\)

Vậy GTNN của đa thức = -3 khi và chỉ khi x=y=-2

9 tháng 3 2020

a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)

\(\Rightarrow\left(2x-3\right)^2+91\ge91\)

hay A \(\ge91\)

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)

<=> 2x-3=0

<=> 2x=3

<=> \(x=\frac{3}{2}\)

Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)

b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)

Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)

9 tháng 3 2020

\(C=2x^2+2xy+y^2-2x+2y+2\)

\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)

\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)

Ta có: 

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)

\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)

hay C\(\ge\)1

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)

Vậy Min C=1 đạt được khi y=1 và x=0

9 tháng 10 2016

\(A=2x^2+2xy+y^2+4x-10\)

=>\(A=\left(x^2+2xy+y^2\right)+\left(x^2+4x+4\right)-14\)

=>\(A=\left(x+y\right)^2+\left(x+2\right)^2-14\)

Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\\\left(x+2\right)^2\ge0\end{cases}\Rightarrow}\left(x+y\right)^2+\left(x+2\right)^2-14\ge-14\)

\(\Rightarrow A_{min}=-14\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=0\\\left(x+2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=0\\x+2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=2\end{cases}}}\)

Vậy Amin=-14 tại x=-2 và y=2

9 tháng 10 2016

\(A=\left(x^2+2xy+y^2\right)+\left(x^2+4x+4\right)-14\)

\(A=\left(x+y\right)^2+\left(x+2\right)^2-14\)

\(\Rightarrow A_{min}=-14\Leftrightarrow x=-2,y=2\)

10 tháng 8 2016

Phân tích đa thức thành nhân tử:

         x2 + 2xy +y2 -3x - 3y -10

         =(x+2xy +y2)- (3x+ 3y)-10

          =(x+y)2 - 3.(x+y)-10

           =(x+y).(x+y-3)-10 vui

 

5 tháng 7 2016

1/B=\(-\left(x^2+2y^2+2xy-2y\right)\)

     =\(-\left(x^2+2xy+y^2+y^2-2y+1-1\right)\)

     =\(-\left[\left(x+y\right)^2+\left(y-1\right)^2\right]+1\)<=1

Bmax=1 khi x+y=0 và y-1=0=>x=-1;y=1

2/C=\(x^2+x+\frac{1}{4}+y^2+y+\frac{1}{4}+\frac{1}{2}\)

      =\(\left(x+\frac{1}{2}\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{1}{2}\)>=\(\frac{1}{2}\)

Cmin=\(\frac{1}{2}\)khi \(x+\frac{1}{2}=0\)và \(y+\frac{1}{2}=0\)=>\(x=y=\frac{-1}{2}\)

13 tháng 7 2015

1/ \(x^2-2x+1=\left(x-1\right)^2\ge0\) với mọi x thuộc R.

Dấu "=" xảy ra khi \(x-1=0\Leftrightarrow x=1\)

Vậy GTNN của biểu thức là 0.

2/ \(x^2+4x-1=\left(x^2+4x+4\right)-5=\left(x+2\right)^2-5\ge-5\) với mọi x thuộc R.

Dấu "=" xảy ra khi \(x+2=0\Leftrightarrow x=-2\)

Vậy GTNN của biểu thức là -5.