Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
Đặt \(A=x^2-3x\)
\(A=\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{4}\)
\(A=\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\)
Mà \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow A\ge-\frac{9}{4}\)
Dấu "=" xảy ra khi : \(x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
Vậy \(A_{Min}=-\frac{9}{4}\Leftrightarrow x=\frac{3}{2}\)
Đặt \(B=-x^2-2x\)
\(-B=x^2+2x\)
\(-B=\left(x^2+2x+1\right)-1\)
\(-B=\left(x+1\right)^2-1\)
Mà \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow-B\ge-1\Leftrightarrow B\le1\)
Dấu "=" xảy ra khi : \(x+1=0\Leftrightarrow x=-1\)
Vậy \(B_{Max}=1\Leftrightarrow x=-1\)
\(P=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
\(A=2x-2x^2-5=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\le-\frac{9}{2}\)
A đạt giá trị lớn nhất bằng -9/2 khi x = 1/2
\(^{x^2-2x+5}\)=\(\left(x^2-2x+4\right)+1\)=\(\left(x-2\right)^2+1\)
có \(\left(x-1\right)^2\)\(\ge\)0 vs mọi x
=>(\(\left(x-1\right)^2+1\)\(\ge\)1 vs mọi x
=>Giá trị nhỏ nhất của đa thức =1<=>x-1=0<=>x=1
vậy giá trị nhỏ nhất của x^2-2x+5 là 1<=>x=1
Bạn dưới nhầm rùi kìa !!!!
\(P=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
P có GTNN là 4 tại x = 1 nha