Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) \(E=x^2-6x+9+x^2-22x+121=2x^2-28x+130\)
\(\Rightarrow2E=4x^2-56x+242=\left(4x^2-56x+196\right)+46=\left(2x-14\right)^2+46\)
Vì \(\left(2x-14\right)^2\ge0\Rightarrow2E=\left(2x-14\right)^2+46\ge46\Rightarrow E\ge23\)
Dấu "=" xảy ra khi x=7
Vậy Emin=23 khi x=7
+) \(F=\frac{-2}{x^2-2x+5}=\frac{-2}{x^2-2x+1+4}=\frac{-2}{\left(x-1\right)^2+4}\)
Vì \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\Rightarrow F=\frac{-2}{\left(x-1\right)^2+4}\le-\frac{2}{4}=-\frac{1}{2}\)
Dấu "=" xảy ra khi x=1
Vậy Fmin=-1/2 khi x=1
+) \(G=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)=\left(x^2-6x+x-6\right)\left(x^2-3x-2x+6\right)=\left(x^2-5x-6\right)\left(x^2-5x+6\right)\)
Đặt x2-5x=t, ta được:
\(G=\left(t-6\right)\left(t+6\right)=t^2-36=\left(x^2-5x\right)^2-36\)
Vì \(\left(x^2-5x\right)^2\ge0\Rightarrow G=\left(x^2-5x\right)^2-36\ge36\)
Dấu "=" xảy ra khi x=0 hoặc x=5
Vậy Gmin=36 khi x=0 hoặc x=5
a: \(A=2x^2-2xy-y^2+2xy=2x^2-y^2\)
\(=2\cdot\dfrac{4}{9}-\dfrac{1}{9}=\dfrac{7}{9}\)
b: \(B=5x^2-20xy-4y^2+20xy=5x^2-4y^2\)
\(=5\cdot\dfrac{1}{25}-4\cdot\dfrac{1}{4}\)
=1/5-1=-4/5
c \(C=x^3+6x^2+12x+8=\left(x+2\right)^3=\left(-9\right)^3=-729\)
d: \(D=20x^3-10x^2+5x-20x^2+10x+4\)
\(=20x^3-30x^2+15x+4\)
\(=20\cdot5^3-30\cdot5^2+15\cdot2+4=1784\)
Câu 2:
\(A=3\left(2x+9\right)^2-1>=-1\)
Dấu '=' xảy ra khi x=-9/2
Câu 9:
=>(x-30)^2=0
=>x-30=0
=>x=30
Câu 10:
\(=2x^2+6x-4x-12-2x^2-2x=-12\)
a) \(\left(1+x\right)^2+\left(1-x\right)^2\)
\(=1+2x+x^2+1-2x+x^2\)
\(=2x^2+2\)
b) \(\left(x+2\right)^2+\left(1+x\right)\left(1-x\right)\)
\(=x^2+4x+4+1-x^2\)
\(=4x+5\)
c) \(\left(x-3\right)^2+3\left(x+1\right)^2\)
\(=x^2-6x+9+3x^2+6x+3\)
\(=4x^2+12\)
d)\(\left(2+3x\right)\left(3x-2\right)-\left(3x+1\right)^2\)
\(=9x^2-4-9x^2-6x-1\)
\(=-6x-5\)
e) \(\left(x+5\right)\left(x-2\right)-\left(x+2\right)^2\)
\(=x^2-2x+5x-10-x^2-4x-4\)
\(=-x-14\)
f) \(\left(x+3\right)\left(2x-5\right)-2\left(1+x\right)^2\)
\(=2x^2-5x+6x-15-2-4x-2x^2\)
\(=-3x-17\)
g) \(\left(4x-1\right)\left(4x+1\right)-4\left(1-2x\right)^2\)
\(=16x^2-1-4+16x-16x^2\)
\(=16x-5\)
#Học tốt!
\(A=x^2-3x+5\)
\(=x^2-3x+\frac{9}{4}+\frac{11}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\)
\(\left(x-\frac{3}{2}\right)^2\ge0\Rightarrow A\ge\frac{11}{4}\)
Dấu "=" xảy ra khi \(x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)
Vậy Min A = \(\frac{11}{4}\Leftrightarrow x=\frac{3}{2}\)
a) \(A=x^2-3x+5\)
\("="\Leftrightarrow x=\frac{11}{4}\Rightarrow x=\frac{3}{2};\frac{11}{4}\)
b) \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)
\("="\Leftrightarrow x=5\Rightarrow x=0;5\)
c) \(C=4x-x^2+3\)
\("="\Leftrightarrow x=7\Rightarrow x=2;7\)
d) \(D=x^4+x^2+2\)
\("="\Leftrightarrow x=2\Rightarrow x=0;2\)
a) \(A=\dfrac{\left(-2\right)^5}{\left(-2\right)^3}=\left(-2\right)^{5-3}=\left(-2\right)^2=4\)
b) \(y\ne0:B=\dfrac{\left(-y\right)^7}{\left(-y\right)^3}=\left(-y\right)^{7-3}=\left(-y\right)^4=y^4\)
c) \(x\ne0:C=\dfrac{\left(x\right)^{12}}{\left(-x\right)^{10}}=\left(x\right)^{12-10}=\left(x\right)^2=x^4\)
d) \(x\ne0:D=\dfrac{2x^6}{\left(2x\right)^3}=\dfrac{2x^6}{8x^3}=\dfrac{1}{4}\left(x\right)^{6-3}=\dfrac{1}{4}\left(x\right)^3\)
e) \(x\ne0:E=\dfrac{\left(-3x\right)^5}{\left(-3x\right)^2}=\left(-3x\right)^{5-2}=\left(-3x\right)^3=-27x^3\)
f) \(x,y\ne0:F=\dfrac{\left(xy^2\right)^4}{\left(xy^2\right)^2}=\left(xy^2\right)^{4-2}=\left(xy^2\right)^2=x^2y^4\)
i) \(x\ne-2:I=\dfrac{\left(x+2\right)^9}{\left(x+2\right)^6}=\left(x+2\right)^{9-6}=\left(x+2\right)^3\)
a: \(E=x^2-6x+9+x^2-22x+121\)
\(=2x^2-28x+130\)
\(=2\left(x^2-14x+65\right)=2\left(x-7\right)^2+32>=32\)
Dấu '=' xảy ra khi x=7
b: \(x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4>=4\)
=>2/x2-2x+5<=2/4=1/2
=>A>=-1/2
Dấu '=' xảy ra khi x=1