K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2019

\(D=\left(x+2\right)\left(x+2\right)+\left(x+1\right)\left(x+1\right)+5\)

\(D=\left(x+2\right)^2+\left(x+1\right)^2+5\)

Vì \(\left(x+2\right)^2\ge0;\left(x+1\right)^2\ge0\)

Nên \(\left(x+2\right)^2+\left(x+1\right)^2+5>5,\forall x\)

\(Dmin=5\)

Khi \(x+2=0\Leftrightarrow x=-2;x+1=0\Leftrightarrow x=-1\)

21 tháng 7 2021

b)  (2x-6)(x+4)=0

c)  (x-3)(x+4)<0

d)  (x+2)(X-5)>0

21 tháng 7 2021

bạn đăg tách ra cho m.n cùng giúp nhé

Bài 2 : 

a, \(A=\left|2x-4\right|+2\ge2\)

Dấu ''='' xảy ra khi x = 2 

Vậy GTNN A là 2 khi x = 2 

b, \(B=\left|x+2\right|-3\ge-3\)

Dấu ''='' xảy ra khi x = -2 

Vậy GTNN B là -3 khi x = -2 

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

$A=(x-4)^2+1$

Ta thấy $(x-4)^2\geq 0$ với mọi $x$

$\Rightarroe A=(x-4)^2+1\geq 0+1=1$

Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$

-------------------

$B=|3x-2|-5$

Vì $|3x-2|\geq 0$ với mọi $x$ 

$\Rightarrow B=|3x-2|-5\geq 0-5=-5$

Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

$C=5-(2x-1)^4$

Vì $(2x-1)^4\geq 0$ với mọi $x$ 

$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$

Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$

----------------

$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$

$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$

Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$

$\Leftrightarrow x=3; y=1$

26 tháng 12 2022

đợi tý

18 tháng 8 2023

Đã trả lời rồi còn độ tí đồ ngull

2 tháng 10 2015

d, 5 - | x - 2 | = 3

| x - 2 | = 5 - 3 = 2

=> TH1: x - 2 = 2

=> x = 4

TH2: x - 2 = -2

=> x = 0 

=> x có 2 nghiệm { 0; 4 }

Bài 2: 

a) Ta có: \(\left|2x-5\right|\ge0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

29 tháng 6 2021

C = |x + 8| + |x + 5| + |x + 1|

Ta có: |x + 8| + |x + 1| = |x + 8| + |-x - 1| \(\ge\)|x + 8 - x - 1| = 7

   |x + 5| \(\ge\)0

=> C \(\ge\)0 + 7 = 7

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x+8\right)\left(-x-1\right)\ge0\\x+5=0\end{cases}}\) <=> \(\hept{\begin{cases}-8\le x\le-1\\x=-5\end{cases}}\) <=> x = -5

Vậy MinC = 7 <=> x = -5

D = |x - 2| + |x - 19| + |x - 17|

Ta có: |x - 2| + |x - 19| = |x - 2| + |19 - x| \(\ge\)|x - 2 + 19 - x| = 17 

|x - 17| \(\ge\)0

=> D \(\ge\)0 + 17 = 17

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2\right)\left(19-x\right)\ge0\\x-17=0\end{cases}}\) <=> \(\hept{\begin{cases}2\le x\le19\\x=17\end{cases}}\) <=> x = 17

Vậy MinD = 17 <=> x = 17

5 tháng 9 2016

bạn cho nhìu ứa nên mik trả lời vài câu nha:

1.

A. Vì |x- 1/2| >=0       =>       Amin =0   

B.Vì |x + 3/4| >=0   =>      B >= 2 (cộng 2 mà)   =>       Bmin =2     khi   x+ 3/4 =0 ....

các câu còn lại làm tương tự nhé

3 tháng 1 2017

Gọi \(A=3.\left|x+\frac{-2}{5}\right|+\frac{5}{2}\)

Ta có :   \(\left|x+\frac{-2}{3}\right|\ge0\)

         \(3.\left|x+\frac{-2}{3}\right|\ge0\)

\(3.\left|x+\frac{-2}{3}\right|+\frac{5}{2}\ge\frac{5}{2}\)

\(\Rightarrow Min_A=\frac{5}{2}\)

\(\Leftrightarrow3.\left|x+\frac{-2}{3}\right|=0\)

\(\Leftrightarrow\left|x+\frac{-2}{5}\right|=0\)

\(\Leftrightarrow x+\frac{-2}{5}=0\)

\(\Leftrightarrow x=\frac{2}{5}\)

26 tháng 3 2022

`Answer:`

1. 

Do \(\left|x-\frac{2}{5}\right|\ge0\forall x\)

\(\Rightarrow3.\left|x-\frac{2}{5}\right|\ge0\forall x\)

\(\Rightarrow3.\left|x-\frac{2}{5}\right|+\frac{5}{2}\ge\frac{5}{2}\forall x\)

Dấu "=" xảy ra khi \(\left|x-\frac{2}{5}\right|=0\Leftrightarrow x-\frac{2}{5}=0\Leftrightarrow x=\frac{2}{5}\)

Vậy \(3.\left|x-\frac{2}{5}\right|+\frac{5}{2}\) đạt giá trị nhỏ nhất \(=\frac{5}{2}\Leftrightarrow x=\frac{2}{5}\)

2. 

Do \(\left|x-\frac{1}{2}\right|\ge0\forall x\)

\(\Rightarrow\left|x-\frac{1}{2}\right|+\frac{3}{4}\ge\frac{3}{4}\forall x\)

\(\Rightarrow A\ge\frac{3}{4}\)

Dấu "=" xảy ra khi \(\left|x-\frac{1}{2}\right|=0\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

Vậy giá trị nhỏ nhất của \(A=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)

2: B=|x+5|-|x-2|<=|x+5-x+2|=7

Dấu = xảy ra khi -5<=x<=2