K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2016

D= x^2+2*(1/2)xy+((1/2)y)^2+(3/4)y^2+1 
=(x+(1/2)y)^2 +1 
Nên min D=1 
E=(2x-1)^2+(y-1)^2+(x-3y)^2+1 
nên min E=1

3 tháng 8 2016

D= x^2+2*(1/2)xy+((1/2)y)^2+(3/4)y^2+1 
=(x+(1/2)y)^2 +1 
Nên min D=1 
E=(2x-1)^2+(y-1)^2+(x-3y)^2+1 
nên min E=1

24 tháng 6 2020

A = | x - 3 | + 1

Ta có : \(\left|x-3\right|\ge0\forall x\Rightarrow\left|x+3\right|+1\ge1\)

Dấu = xảy ra <=> | x + 3 | = 0

                      <=> x + 3 = 0

                      <=> x = -3

Vậy AMin = 1 khi x = -3

B = -100 - | 7 - x |

Ta có : \(\left|7-x\right|\ge0\forall x\Rightarrow-\left|7-x\right|\le0\)

=> \(-100-\left|7-x\right|\le-100\)

Dấu = xảy ra <=> - | 7 - x | = 0

                     <=> 7 - x = 0

                     <=> x = 7

Vậy BMax = -100 khi x = 7

C = -( x + 1 )2 - | 2 - y | + 11

Ta có : \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left|2-y\right|\ge0\forall y\end{cases}\Rightarrow}\hept{\begin{cases}-\left(x+1\right)^2\le0\\-\left|2-y\right|\le0\end{cases}}\)

=> \(-\left(x+1\right)^2-\left|2-y\right|\le11\forall x,y\)

Dấu = xảy ra <=> -( x + 1 )2 = 0 và | 2 - y | = 0

                     <=> x + 1 = 0 và 2 - y = 0

                     <=> x = -1 và y = 2

Vậy CMax = 11 khi x = -1 ; y = 2

D = ( x - 1 )2 + | 2y + 2 | + 3

Ta có : \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left|2y+2\right|\ge0\forall y\end{cases}\Rightarrow\left(x-1\right)^2+\left|2y+2\right|+3\ge}3\)

Dấu = xảy ra <=> ( x - 1 )2 = 0 và | 2y + 2 | = 0

                      <=> x - 1 = 0 và 2y + 2 = 0

                      <=> x = 1 và y = -1

Vậy DMin = 3 khi x = 1 và y = -1

24 tháng 6 2020

a) A=/x-3/+1>=0+1=1

dấu "="sảy ra <=>x-3=0<=>x=3

vậy min A=1 <=>x=3

b) B=-100-/7-x/=<-100-0=-100

dấu "="sảy ra <=>7-x=0<=>x=7

vậy max B=-100<=>x=7

c)C=-(x+1)^2-/2-y/+11=<-0-0+11=11

dấu "="sảy ra <=>x=-1vày=2

vậy max C=11<=>x=-1 và y=-2

d)D=(x-1)^2+/2y+2/+3>=0+0+3=3

dấu "="sảy ra <=>x=1 và y =-1

vậy min D=3<=>x=1 và y=-1

25 tháng 10 2018

          172 - (2x   8)=2          

1 tháng 1 2017

Ta có :

\(\left(x-1\right)^2\ge0\)

\(\left|2y+2\right|\ge0\)

\(\Rightarrow\left(x-1\right)^2+\left|2y+2\right|\ge0\)

\(\Rightarrow\left(x-1\right)^2+\left|2y+2\right|-3\ge-3\)

\(\Rightarrow Min_E=-3\)

1 tháng 1 2017

Nhất nhỏ =-3 khi x=1 và y=-1

10 tháng 7 2016

a,,A=|x-3|+1

Ta thấy:\(\left|x-3\right|\ge0\)

\(\Rightarrow\left|x-3\right|+1\ge0+1=1\)

\(\Rightarrow A\ge1\).Dấu = khi x=3

Vậy....

b)B=|6-2x|-5

Ta thấy:\(\left|6-2x\right|\ge0\)

\(\Rightarrow\left|6-2x\right|-5\ge0-5=-5\)

\(\Rightarrow B\ge-5\).Dấu = khi x=3

Vậy...

c) C=3-|x+1|

Ta thấy:\(-\left|x+1\right|\le0\)

\(\Rightarrow3-\left|x+1\right|\le3-0=3\)

\(\Rightarrow C\le3\).Dấu = khi x=-1

e) E= -(x+1)^2 -|2-y|+11

Ta thấy:\(\hept{\begin{cases}-\left(x+1\right)^2\\-\left|2-y\right|\end{cases}\le}0\)

\(\Rightarrow-\left(x+1\right)^2-\left|2-y\right|\le0\)

\(\Rightarrow-\left(x+1\right)^2-\left|2-y\right|+11\le0+11=11\)

\(\Rightarrow E\le11\).Dấu = khi x=-1 y=2

Vậy... 

f)F= (x-1)^2+|2y+2|-3

Ta thấy:\(\hept{\begin{cases}\left(x-1\right)^2\\\left|2y+2\right|\end{cases}}\ge0\)

\(\Rightarrow\left(x-1\right)^2+\left|2y+2\right|\ge0\)

\(\Rightarrow\left(x-1\right)^2+\left|2y+2\right|-3\ge0-3=-3\)

\(\Rightarrow F\ge-3\).Dấu = khi x=1  y=-1

Vậy...

1 tháng 4 2020

a)  ( x - 1 )2 \(\ge\)0

\(|2y+2|\)\(\ge0\)

\(\Rightarrow\left(x-1\right)^2+|2y+2|\ge0\)

\(\Rightarrow\left(x-1\right)^2+|2y+2|-3\ge-3\)

\(Min_A=-3\)