Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=x^2+8x+16-16\)
\(B=\left(x+4\right)^2-16\)
có : \(\left(x+4\right)^2\ge0\Rightarrow\left(x+4\right)^2-16\ge-16\)
\(\Rightarrow B\ge-16\)
Dấu "=" xảy ra khi
(x + 4)2 = 0 => x + 4 = 0 => x = - 4
vậy Min B = -16 khi x = -4
\(B=x^2+8x\)
\(=x^2.2.x.4+16-16\)
\(=\left(x+4\right)^2-16\)
Vì \(\left(x+4\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x+4\right)^2-16\ge0-16;\forall x\)
Hay\(B\ge-16;\forall x\)
Dấu "=" xảy ra\(\Leftrightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Vậy MIN B= -16 \(\Leftrightarrow x=-4\)
c: \(-x^2+2x-2=-\left(x-1\right)^2-1\le-1\forall x\)
\(\Leftrightarrow V\ge-1\forall x\)
Dấu '=' xảy ra khi x=1
b: \(\Leftrightarrow2n^2+n-2n-1+3⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{0;-1;1;-2\right\}\)
a. x2 + x + 1
= x2 + 2.x.1/2 + 1/4 + 3/4
= (x + 1/2)2 + 3/4
Mà (x + 1.2)2 \(\ge\)0
=> (x + 1/2)2 + 3/4 \(\ge\)3/4
Vậy GTNN của đa thức là 3/4 <=> x + 1/2 = 0 <=> x = -1/2
b. (x - 1)(x + 2)(x + 3)(x + 6)
= (x - 1)(x + 6)(x + 2)(x + 3)
= (x2 + 6x - x - 6)(x2 + 3x + 2x + 6)
= (x2 + 5x - 6)(x2 + 5x + 6)
= (x2 + 5x)2 - 62
= (x2 + 5x)2 - 36
Mà (x2 + 5x)2 \(\ge\)0
=> (x2 + 5x)2 - 36 \(\ge\)-36
Vậy đa thức có GTNN là -36 <=> x2 + 5x = 0 <=> x.(x + 5) = 0 <=> x = 0 hoặc x + 5 = 0 <=> x = 0 hoặc x = -5.
a. x2 + x + 1
= x2 + 2.x.1/2 + 1/4 + 3/4
= (x + 1/2)2 + 3/4
Mà (x + 1.2)2 ≥0
=> (x + 1/2)2 + 3/4 ≥3/4
Vậy GTNN của đa thức là 3/4 <=> x + 1/2 = 0 <=> x = -1/2
b. (x - 1)(x + 2)(x + 3)(x + 6)
= (x - 1)(x + 6)(x + 2)(x + 3)
= (x2 + 6x - x - 6)(x2 + 3x + 2x + 6)
= (x2 + 5x - 6)(x2 + 5x + 6)
= (x2 + 5x)2 - 62
= (x2 + 5x)2 - 36
Mà (x2 + 5x)2 ≥0
=> (x2 + 5x)2 - 36 ≥-36
Vậy đa thức có GTNN là -36 <=> x2 + 5x = 0 <=> x.(x + 5) = 0 <=> x = 0 hoặc x + 5 = 0 <=> x = 0 hoặc x = -5.
\(A=2\left(x^2-4x+4\right)-7=2\left(x-2\right)^2-7\ge-7\)
Dấu \("="\Leftrightarrow x=2\)
\(B=\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{1}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)
\(C=4\left(x^2-2x+1\right)-4=4\left(x-1\right)^2-4\ge-4\)
Dấu \("="\Leftrightarrow x=1\)
\(D=\dfrac{1}{-\left(x^2+2x+1\right)+6}=\dfrac{1}{-\left(x+1\right)^2+6}\ge\dfrac{1}{6}\)
Dấu \("="\Leftrightarrow x=-1\)
1.
$A=2x^2-8x+1=2(x^2-4x+4)-7=2(x-2)^2-7$
Vì $(x-2)^2\geq 0$ với mọi $x\in\mathbb{R}$
$\Rightarrow A\geq 2.0-7=-7$
Vậy $A_{\min}=-7$ khi $x-2=0\Leftrightarrow x=2$
2.
$B=x^2+3x+2=(x^2+3x+1,5^2)-0,25=(x+1,5)^2-0,25\geq 0-0,25=-0,25$
Vậy $B_{\min}=-0,25$ khi $x=-1,5$
3.
$C=4x^2-8x=(4x^2-8x+4)-4=(2x-2)^2-4\geq 0-4=-4$
Vậy $C_{\min}=-4$ khi $2x-2=0\Leftrightarrow x=1$
4. Để $D_{\min}$ thì $5-x^2-2x$ là số thực âm lớn nhất
Mà không tồn tại số thực âm lớn nhất nên không tồn tại $x$ để $D_{\min}$
\(x^2-8x-16=x^2-2.4x+16-32=\left(x-4\right)^2-32\ge-32\)
Dấu "=" xảy ra \(\Leftrightarrow\) \(x-4=0\Leftrightarrow x=4\)
Vậy GTNN của biểu thức là -32 khi x = 4
Ta có:
\(x^2-8x-16\)
⇔ ( \(x^2-2.x.4+4^2\) )\(-16\)
⇔ \(\left(x-4\right)^2-16\)
Do \(\left(x-4\right)^2\ge0\) ⇒ \(\left(x-4\right)^2-16\ge-16\)
Dấu " = " xảy ra khi x - 4 = 0 ⇔ x = 4
Vậy GTNN của A = -16 khi x = 4