K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2020

\(A=\left|x+4\right|+28\)
Ta thấy \(\left|x+4\right|\ge0\) với mọi \(x\)
=> \(\left|x+4\right|+28\ge28\)

=> \(A\ge28\)

Dấu bằng xảy ra khi \(\left|x+4\right|=0\)

<=> \(x+4=0\)

<=> \(x=-4\)

Vậy giá trị nhỏ nhất của \(A=28\) tại \(x=-4\)

\(B=2018-\left|x+9\right|\)
Ta thấy \(\left|x+9\right|\ge0\)với mọi \(x\)

=> \(2018-\left|x+9\right|\le2018\)

=> \(B\le2018\)

Dấu bằng xảy ra khi \(\left|x+9\right|=0\)

<=> \(x+9=0\)

<=> \(x=-9\)

Vậy giá trị lớn nhất của \(B=2018\)tại \(x=-9\)

5 tháng 2 2020

   Câu thứ nhất :

Vì | x + 4 | \(\ge\)0 nên để A nhỏ nhất thì | x + 4 | nhỏ nhất .

Do đó | x + 4 | = 0 => x = -4 

Vậy x = -4

   Câu thứ hai :

Vì | x + 9 | \(\ge\)0 nên để B lớn nhất thì | x + 9 | nhỏ nhất 

Do đó | x + 9 | = 0 => x = -9 

Vậy x = -9

Hok tốt

# owe

23 tháng 10 2021

Bài 4:

\(A=2x^2-15\ge-15\\ A_{min}=-15\Leftrightarrow x=0\\ B=2\left(x+1\right)^2-17\ge-17\\ B_{min}=-17\Leftrightarrow x=-1\)

Bài 5:

\(A=-x^2+14\le14\\ A_{max}=14\Leftrightarrow x=0\\ B=25-\left(x-2\right)^2\le25\\ B_{max}=25\Leftrightarrow x=2\)

23 tháng 10 2021

mik chưa học giá trị lớn nhất là max và giá trị nhỏ nhất là min nên bạn cho mik kí hiệu khác nha

2:

|x+4|>=0

=>-|x+4|<=0

=>B<=11

Dấu = xảy ra khi x=-4

28 tháng 3 2016

tach 14-x = 10-4-x roi sau do chac ban cung phai tu biet lam

21 tháng 7 2016

\(a\in\left\{1;2;3;...;29;30\right\}\)

GTNN B=0

8 tháng 4 2023

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3

 

                     

             

                                   

     

 

            

28 tháng 4 2017

a, Ta có: \(\hept{\begin{cases}\left|x+2\right|\ge0\\\left|2y-10\right|\ge0\end{cases}\Rightarrow\left|x+2\right|+\left|2y-10\right|}\ge0\)

\(\Rightarrow\left|x+2\right|+\left|2y-10\right|+2014\ge2014\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|x+2\right|=0\\\left|2y-10\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=5\end{cases}}}\)

Vậy SMin = 2014 tại x = -2 và y = 5

b, Đặt A = |x + 6| + |7 - x| 

Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\),ta có:

\(A=\left|x+6\right|+\left|7-x\right|\ge\left|x+6+7-x\right|=13\)

Dấu "=" xảy ra <=> \(\left(x+6\right)\left(7-x\right)\ge0\Leftrightarrow-6\le x\le7\)

Vậy AMin = 13 tại \(-6\le x\le7\)

28 tháng 4 2017

Để biểu thức S đạt giá trị nhỏ nhất => | x + 2 | và | 2y - 10 | có giá trị nhỏ nhất 

=> | x+2 | = 0 =>  x = 0 - 2 = -2 ; | 2y -10 | =0 => 2y = 0 - 10 = -10 => y = -10 : 2 = -5 

Vậy x = -2 ; y = -5 thì biểu thức S đạt giá trị nhỏ nhất