\(A=x^2+2y^2biếtx+2y=3\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2015

\(x+2y=3\Rightarrow x=3-2y\Rightarrow A=\left(2y-3\right)^2+2y^2=4y^2-12y+9+2y^2=6y^2-12y+9\)

\(A=3\left(3y^2-4y+3\right)=3\left[\left(y\sqrt{3}\right)^2-2.y\sqrt{3}.\frac{2}{\sqrt{3}}+\frac{4}{3}+\frac{5}{3}\right]=3\left(y\sqrt{3}-\frac{2}{\sqrt{3}}\right)^2+5\ge5\)

Dấu = xảy ra khi \(y=\frac{2}{3}\Rightarrow x=\frac{5}{3}\)

hoc tot de lam lien doi nho chua.

7 tháng 4 2018

\(A=2x^2+y^2-2xy-2x+3\)

\(A=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2\)

\(A=\left(x-y\right)^2+\left(x-1\right)^2+2\)

Mà \(\left(x-y\right)^2\ge0\forall x;y\)

       \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow A\ge2\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=1\end{cases}}\)

Vậy Min A = 2 khi x=y=1

a/ giá trị nhỏ nhất của A  là 2

b/ giá trị lớn nhất của B là 51

2 tháng 8 2021

tớ chỉ có bài tham khảo trên mạng thôi bạn thông cảm

Ta có: x + y = 1
   <=> (x + y)3 = 1
   <=> x3 + y3 + 3xy(x + y) = 1
   <=> x3 + y3 + 3xy = 1 (do x + y = 1)
   <=> x3 + y3 = 1 - 3xy
Áp dụng BĐT Cô - si, ta có:
   xy >= (x+y)24=14(x+y)24=14
<=> -3xy≥−34≥−34
Ta có x3 + y3 = 1 - 3xy ≥1−34=14≥1−34=14
Dấu "=" xảy ra khi x = y = 1212
Vậy GTNN của x3 + y3 là 1414khi x =  y = 12

3 tháng 7 2019

2A = 2x^2 - 2xy + 2y^2 - 4x - 4y

2A = ( x^2 - 2xy + y^2 ) + ( x^2 - 4x + 2^2 ) + ( y^2 - 4y + 2^2 ) - 8

2A = ( x - y )^2 + ( x - 2 )^2 + ( y - 2 )^2 - 8

Ta có : ( x - y )^2 >= 0 ; ( x - 2 )^2 >= 0 ; ( y - 2 )^2 >= 0 với mọi x , y 
=> Min 2A = 0 + 0 + 0 - 8 = -8
=> Min A = -8 : 2 = -4

7 tháng 9 2018

\(A=x^2+2y^2-2xy+4x-2y+12\)

\(A=\left(x^2-2xy+y^2\right)+y^2+4x-2y+12\)

\(A=\left[\left(x-y\right)^2+2\left(x-y\right).2+4\right]+\left(y^2+2y+1\right)+7\)

\(A=\left(x-y+2\right)^2+\left(y+1\right)^2+7\)

Mà  \(\left(x-y+2\right)^2\ge0\forall x;y\)

      \(\left(y+1\right)^2\ge0\forall y\)

\(\Rightarrow A\ge7\)

Dấu "=" xảy ra khi :  \(\hept{\begin{cases}x-y+2=0\\y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-1\end{cases}}\)

Vậy  \(A_{Min}=7\Leftrightarrow\left(x;y\right)=\left(-3;-1\right)\)

22 tháng 10 2021

\(1,a,A=x^2-6x+25\)

\(=x^2-2.x.3+9-9+25\)

\(=\left(x-3\right)^2+16\)

Ta có :

\(\left(x-3\right)^2\ge0\)Với mọi x

\(\Rightarrow\left(x-3\right)^2+16\ge16\)

Hay \(A\ge16\)

\(\Rightarrow A_{min}=16\)

\(\Leftrightarrow x=3\)

22 tháng 10 2021

\(b,B=4x^2+4x-2\)

\(B=4x^2+4x+1-3\)

\(B=\left(4x^2+4x+1\right)-3\)

\(B=\left(2x+1\right)^2-3\)

Ta có : 

\(\left(2x+1\right)^2\ge0\)với mọi x

\(\Rightarrow\left(2x+1\right)^2-3\ge-3\)

\(\Leftrightarrow B\ge-3\)

\(\Rightarrow B_{min}=-3\)

\(\Leftrightarrow x=-\frac{1}{2}\)

20 tháng 7 2018

A=\(\left(x-y\right)^2-2.6.\left(x-y\right)+36+5y^2+10y+5+4\)

=\(\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)

Dấu bằng xảy ra khi y=1 và x=5

2B=\(2x^2+2y^2-2xy-2x+2y+2\)

=\(\left(x-y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\)

=>B\(\ge\)0

20 tháng 7 2016
Ai cứu mình với TToTT