K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2021

a,\(x^2-6x-17=x^2-2\cdot3x+9-26=\left(x-3\right)^2-26\ge-26\)

b, \(x^2-10x=x^2-2\cdot5x+25-25=\left(x-5\right)^2-25\ge-25\)

c,\(3x^2-12x+5=3x^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+12-7=\left(\sqrt{3}x-2\sqrt{3}\right)^2-7\ge-7\)

d,\(2x^2-x-1=2x^2-2\cdot\sqrt{2}x\cdot\dfrac{1}{2\sqrt{2}}+\dfrac{1}{8}-\dfrac{9}{8}=\left(\sqrt{2}x-\dfrac{1}{2\sqrt{2}}\right)^2-\dfrac{9}{8}\ge-\dfrac{9}{8}\)

e,\(x^2+y^2-8x+4y+27=x^2-2\cdot4x+16+y^2+2\cdot2y+4+7=\left(x-4\right)^2+\left(y+2\right)^2+7\ge7\)

f,\(x\left(x-6\right)=x^2-6x=x^2-2\cdot3x+9-9=\left(x-3\right)^2-9\ge-9\)

h,\(\left(x-2\right)\cdot\left(x-5\right)\cdot\left(x^2-7x-10\right)=\left(x^2-7x+10\right)\left(x^2-7x-10\right)=\left(x^2-7x\right)^2-100\ge-100\)

Mình giúp tính biểu thức thôi

còn lại bạn tự làm nhé

2 tháng 9 2018

\(A=x^2-3x+5\)

\(=x^2-3x+\frac{9}{4}+\frac{11}{4}\)

\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\)

\(\left(x-\frac{3}{2}\right)^2\ge0\Rightarrow A\ge\frac{11}{4}\)

Dấu "=" xảy ra khi \(x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)

Vậy Min A = \(\frac{11}{4}\Leftrightarrow x=\frac{3}{2}\)

2 tháng 9 2018

a) \(A=x^2-3x+5\)

\("="\Leftrightarrow x=\frac{11}{4}\Rightarrow x=\frac{3}{2};\frac{11}{4}\)

b) \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)

\("="\Leftrightarrow x=5\Rightarrow x=0;5\)

c) \(C=4x-x^2+3\)

\("="\Leftrightarrow x=7\Rightarrow x=2;7\)

d) \(D=x^4+x^2+2\)

\("="\Leftrightarrow x=2\Rightarrow x=0;2\)

8 tháng 3 2021

\(A=x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1\forall x\)

Dấu "=" xảy ra <=> x = 3

Vậy MinA = 1

\(B=5x^2-10x+3=5\left(x^2-2x+1\right)-2=5\left(x-1\right)^2-2\ge-2\forall x\)

Dấu "=" xảy ra <=> x = 1

Vậy MinB = -2

\(C=2x^2+8x+y^2-10y+43=2\left(x^2+4x+4\right)+\left(y^2-10y+25\right)+10=2\left(x+2\right)^2+\left(y-5\right)^2+10\ge10\forall x,y\)

Dấu "=" xảy ra <=> x = -2 ; y = 5

Vậy MinC = 10

8 tháng 3 2021

\(A=x^2-6x+10\)

\(=\left(x^2-6x+9\right)+1\)

\(=\left(x-3\right)^2+1\ge1\forall x\)

Dấu"=" xảy ra khi \(x-3=0\Leftrightarrow x=3\)

Vậy \(Min_A=1\Leftrightarrow x=3\)

b,\(B=5x^2-10x+3\)

\(=5\left(x^2-2x+1\right)-2\)

\(=5\left(x-1\right)^2-2\ge-2\forall x\)

Dấu"=" xảy ra khi \(x-1=0\Leftrightarrow x=1\)

Vậy \(Min_B=-2\Leftrightarrow x=1\)

c,\(C=2x^3+8x+y^2-10+43\)

\(=2x^2+8x+8+y^2-10y+25+10\)

\(=2\left(x^2+4x+4\right)+\left(y^2-10y+25\right)+10\)

\(=2\left(x+2\right)^2+\left(y-5\right)^2+10\ge10\forall x,y\)

Dấu"=" xảy ra khi \(\orbr{\begin{cases}x+2=0\\y-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\y=5\end{cases}}}\)

Vậy \(Min_C=10\Leftrightarrow x=-2;y=5\)

28 tháng 8 2018

mk gợi ý, phần còn lại tự làm 

a)  \(A=x^2+2x+5=\left(x+1\right)^2+4\ge4\)

b) \(B=4x^2+4x+11=\left(2x+1\right)^2+10\ge10\)

c)  \(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

d)  \(D=x^2-2x+y^2-4y+7=\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\)

e)  \(E=x^2-4xy+5y^2+10x-22y+28=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

28 tháng 8 2018

a) A = x2 + 2x + 5 

    = x2 + 2x + 1 + 4

    = ( x + 1 )2  + 4

Nhận xét :

( x + 1 )2 > 0 với mọi x 

=> ( x + 1 )2 + 4 > 4 

=> A > 4 

=> A min = 4

Dấu " = " xảy ra khi : ( x + 1 )2  =  0

                                  => x + 1 = 0

                                  => x = - 1

Vậy A min = 4 khi x = - 1

b) B = 4x2 + 4x + 11

= ( 2x )2 + 4x + 1 + 10

= ( 2x + 1 )2 + 10

Nhận xét :

( 2x + 1 )2 > 0 với mọi x

=> ( 2x + 1 )2 + 10 > 10

=> B  >  10

=> B min = 10

Dấu " = " xảy ra khi : ( 2x + 1 )2 = 0

                               => 2x + 1 = 0

                                => x = \(\frac{-1}{2}\)

Vậy Bmin = 10 khi x = \(\frac{-1}{2}\)

c) C = ( x - 1 ) ( x + 2 ) ( x + 3 ) ( x + 6 )

       = [ ( x - 1 ) ( x + 6 ) ] [ ( x + 2 ) ( x + 3 ) ]

        = ( x2 + 5x - 6 ) (  x2 + 5x + 6 )

       = ( x2 + 5x ) 2 - 62

        = ( x2  + 5x )2 - 36

Nhận xét : 

( x2 + 5x )2 > 0 với mọi x

=> ( x2 + 5x )2 - 36 > - 36

=> C > - 36

=> C min = - 36

Dấu " = " xảy ra khi : ( x2 + 5x )2 = 0

                               => x2 + 5x = 0

                               => x ( x + 5 ) = 0

                               => \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\)

                              => \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy C min = - 36 khi x = 0 hoặc x = - 5

d) D = x2 - 2x + y2 - 4y + 7

        = ( x2 - 2x + 1 ) + ( y2 - 4x + 4 ) + 2

        = ( x - 1 )2 + ( y - 2 )2 + 2

Nhận xét :

( x - 1 )2 > 0 với mọi x

( y - 2 )2 > 0 với mọi y

=> ( x - 1 )2 + ( y - 2 )2 > 0 

=> ( x - 1 )2 + ( y - 2 )2 + 2  >  2

=> D > 2

=> D min = 2

Dấu " = " xảy ra khi :  \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\) 

                               => \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\)

                               => \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy D min = 2 khi x = 1 và y = 2

18 tháng 7 2016

a)\(x^2-8x+19=x^2-2.x.4+16+3=\left(x+4\right)^2+3\)

Vì \(\left(x+4\right)^2\ge0\Rightarrow\left(x+4\right)^2+3\ge3\Rightarrow x^2-8x+19\ge3\)

Vậy x2-8x+19 luôn nhận giá trị dương

mấy câu kia làm tương tự

22 tháng 10 2021

\(1,a,A=x^2-6x+25\)

\(=x^2-2.x.3+9-9+25\)

\(=\left(x-3\right)^2+16\)

Ta có :

\(\left(x-3\right)^2\ge0\)Với mọi x

\(\Rightarrow\left(x-3\right)^2+16\ge16\)

Hay \(A\ge16\)

\(\Rightarrow A_{min}=16\)

\(\Leftrightarrow x=3\)

22 tháng 10 2021

\(b,B=4x^2+4x-2\)

\(B=4x^2+4x+1-3\)

\(B=\left(4x^2+4x+1\right)-3\)

\(B=\left(2x+1\right)^2-3\)

Ta có : 

\(\left(2x+1\right)^2\ge0\)với mọi x

\(\Rightarrow\left(2x+1\right)^2-3\ge-3\)

\(\Leftrightarrow B\ge-3\)

\(\Rightarrow B_{min}=-3\)

\(\Leftrightarrow x=-\frac{1}{2}\)

a: \(=-\left(x^2+10x-11\right)\)

\(=-\left(x^2+10x+25-36\right)\)

\(=-\left(x+5\right)^2+36< =36\)

Dấu '=' xảy ra khi x=-5

b: \(=-\left(x^2-6x+5\right)\)

\(=-\left(x^2-6x+9-4\right)\)

\(=-\left(x-3\right)^2+4< =4\)

Dấu '=' xảy ra khi x=3

c: \(=-2\left(x^2-x+\dfrac{5}{2}\right)\)

\(=-2\left(x^2-x+\dfrac{1}{4}+\dfrac{9}{4}\right)\)

\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}< =-\dfrac{9}{2}\)

Dấu '=' xảy ra khi x=1/2

d: \(=2x+8-x^2-4x\)

\(=-x^2-2x+8\)

\(=-\left(x^2+2x-8\right)\)

\(=-\left(x^2+2x+1-9\right)\)

\(=-\left(x+1\right)^2+9< =9\)

Dấu '=' xảy ra khi x=-1

29 tháng 9 2019

a, x2 + 10x + 27

Đặt A = x2 + 2. x. 5 + 52 + 2

= ( x + 5 )2 + 2

Vì ( x + 5 )2 \(\ge\)0 với mọi x

=> ( x + 5 )2 + 2 \(\ge\)2 với mọi x

Hay A \(\ge\)2

Dấu " = " xảy ra khi:

( x + 5 )2 = 0

x + 5 = 0

x = - 5

Vậy Min A = 2 khi x = - 5

b, x2 + x + 7

Đặt B = x2 + x + 7

\(=x^2+x+\frac{1}{4}+\frac{27}{4}\)

\(=\left[x^2+2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]+\frac{27}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{27}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\)với mọi x

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{27}{4}\ge\frac{27}{4}\)với mọi x

Hay B \(\ge\frac{27}{4}\)

Dấu " = " xảy ra khi:

\(\left(x+\frac{1}{2}\right)^2=0\)

\(x+\frac{1}{2}=0\)

\(x=-\frac{1}{2}\)

Vậy Min B = \(\frac{27}{4}\)khi x = \(-\frac{1}{2}\)

29 tháng 9 2019

a) x2 + 10 x + 27 =( x+ 2. 5 . x + 52 ) + 2 = ( x + 5 ) 2 + 2 

Vì ( x + 5 ) 2 \(\ge\) 0 với mọi x nên ( x + 5 ) 2 + 2 \(\ge\) 2 với mọi x

Dấu bằng xảy ra \(\Leftrightarrow\)x + 5 = 0 \(\Leftrightarrow\) x = -5

b) x2 + x + 7 = 0 \(\Leftrightarrow\) x2 + 2. x . \(\frac{1}{2}\)+  \(\left(\frac{1}{2}\right)^2\) + \(\frac{27}{4}\) = 0 \(\Leftrightarrow\)( x + 1/2) 2 + 27/4  = 0

Vì  ( x + 1/2 )2 \(\ge\) 0 với mọi x nên ( x + 1/2) 2 + 27/4 \(\ge\)27/4 với mọi x

Dấu bằng xảy ra \(\Leftrightarrow\)x+ 1/2 = 0 \(\Leftrightarrow\) x = ---\(\frac{1}{2}\) 

c + d ) Tương tự a, b

e) x2 + 14 x + y2 - 2y +7 = 0 \(\Leftrightarrow\) ( x+ 2. x. 7 + 72 ) + ( y2 -- 2y + 1 ) -43 = 0 \(\Leftrightarrow\) ( x + 7 ) 2 + ( y -- 1 )  --43 = 0 ( 1 ) 

Vì ( x + 7 )2 \(\ge\)  0 và ( y -- 1 )2 \(\ge\) 0 với mọi x, y nên  ( 1 ) \(\ge\) --43 với mọi x, y

Dấu bằng xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x+7=0\\y-1=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=-7\\y=1\end{cases}}\)

22 tháng 7 2018

\(A=x^2-10x+30=x^2-10x+25+5=\left(x-5\right)^2+5\ge5\)

Vậy GTNN của A là 5 khi x = 5

\(B=4x^2+4x+9=4x^2+4x+1+8=\left(2x+1\right)^2+8\ge8\)

Vậy GTNN của B là 8 khi x = \(-\dfrac{1}{2}\)

\(C=9x^2-12x+20=9x^2-12+4+16=\left(3x-2\right)^2+16\ge16\)

Vậy GTNN của C là 16 khi x = \(\dfrac{2}{3}\)

\(D=x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Vậy GTNN của D là \(\dfrac{3}{4}\) khi x = \(-\dfrac{1}{2}\)

\(E=2x^2+3x+5=2\left(x^2+\dfrac{3}{2}x+\dfrac{9}{16}\right)+\dfrac{31}{8}=2\left(x+\dfrac{3}{4}\right)^2+\dfrac{31}{8}\ge\dfrac{31}{8}\)

Vậy GTNN của E là \(\dfrac{31}{8}\) khi x = \(-\dfrac{3}{4}\)

\(F=3x^2-7x+6=3\left(x^2-\dfrac{7}{3}x+\dfrac{49}{36}\right)+\dfrac{23}{12}=\left(x-\dfrac{7}{6}\right)^2\ge\dfrac{23}{12}\)Vậy GTNN của F là \(\dfrac{23}{12}\) khi x = \(\dfrac{7}{6}\)

6 tháng 9 2020

+) \(A=x^2+2x-9=x^2+2x+1-10=\left(x+1\right)^2-10\ge-10\)

Min A = -10 \(\Leftrightarrow x=-1\)

+) \(B=x^2+5x-1=x^2+5x+\frac{25}{4}-\frac{29}{4}=\left(x+\frac{5}{2}\right)^2-\frac{29}{4}\ge\frac{-29}{4}\)

Min B = -29/4 \(\Leftrightarrow x=\frac{-5}{2}\)

+) \(C=x^2+4x=x^2+4x+4-4=\left(x+2\right)^2-4\ge-4\)

Min C = -4 \(\Leftrightarrow x=-2\)

+) \(D=x^2-8x+17=x^2-8x+16+1=\left(x-4\right)^2+1\ge1\)

Min D = 1 \(\Leftrightarrow x=4\)

+) \(E=x^2-7x+1=x^2-7x+\frac{49}{4}-\frac{45}{4}=\left(x-\frac{7}{2}\right)-\frac{45}{4}\ge-\frac{45}{4}\)

Min E = -45/4 \(\Leftrightarrow x=\frac{7}{2}\)

6 tháng 9 2020

A = x2 + 2x - 9 

= ( x2 + 2x + 1 ) - 10

= ( x + 1 )2 - 10 ≥ -10 ∀ x

Đẳng thức xảy ra <=> x + 1 = 0 => x = -1

=> MinA = -10 <=> x = -1

B = x2 + 5x - 1

= ( x2 + 5x + 25/4 ) - 29/4

= ( x + 5/2 )2 - 29/4 ≥ -29/4 ∀ x

Đẳng thức xảy ra <=> x + 5/2 = 0 => x = -5/2

=> MinB = -29/4 <=> x = -5/2

C = x2 + 4x

= ( x2 + 4x + 4 ) - 4

= ( x + 2 )2 - 4 ≥ -4 ∀ x

Đẳng thức xảy ra <=> x + 2 = 0 => x = -2

=> MinC = -4 <=> x = -2

D = x2 - 8x + 17

= ( x2 - 8x + 16 ) + 1

= ( x - 4 )2 + 1 ≥ 1 ∀ x

Đẳng thức xảy ra <=> x - 4 = 0 => x = 4

=> MinD = 1 <=> x = 4

E = x2 - 7x + 1

= ( x2 - 7x + 49/4 ) - 45/4

= ( x - 7/2 )2 - 45/4 ≥ -45/4 ∀ x

Đẳng thức xảy ra <=> x - 7/2 = 0 => x = 7/2

=> MinE = -45/4 <=> x = 7/2