Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A, x2+3x+7 = x2+2.x.3/2 +(3/2)2+19/4 = (x+3/2)2 + 19/4 >=19/4
B, = (x2-7x+10)(x2-7x-10) = (x2-7x)2 - 100 >= -100
C, = 5x2+5 >=5
Bạn làm bài kiểm tra hả sao nhiều bài tek. Mk làm mất khá nhiều tg luôn đó
Có một số câu thì mình không làm được. Mong bạn thông cảm!!!
Bạn đăng từng câu một thì sẽ có người giúp bạn đấy!
Tick cho mình nhé!
1)
ĐK: \(x,y\neq 0\); \(x+y\neq 0\)
\(\frac{x^2-y^2}{6x^2y^2}: \frac{x+y}{12xy}\)
\(=\frac{x^2-y^2}{6x^2y^2}. \frac{12xy}{x+y}=\frac{(x-y)(x+y).12xy}{6x^2y^2(x+y)}=\frac{2(x-y)}{xy}\)
2) ĐK: \(x\neq \frac{\pm 1}{2}; 0; 1\)
\(\frac{5x}{2x+1}: \frac{3x(x-1)}{4x^2-1}=\frac{5x}{2x+1}.\frac{4x^2-1}{3x(x-1)}\)
\(=\frac{5x(2x-1)(2x+1)}{(2x+1).3x(x-1)}=\frac{5(2x-1)}{3(x-1)}\)
3) ĐK: \(x\neq \frac{\pm 1}{2}; 0\)
\(\left(\frac{2x-1}{2x+1}-\frac{2x-1}{2x+1}\right): \frac{4x}{10x-5}=0: \frac{4x}{10x-5}=0\)
4) ĐK: \(x\neq \frac{\pm 1}{3}\)
\(\frac{2}{9x^2+6x+1}-\frac{3x}{9x^2-1}=\frac{2}{(3x+1)^2}-\frac{3x}{(3x-1)(3x+1)}\)
\(=\frac{2(3x-1)}{(3x+1)^2(3x-1)}-\frac{3x(3x+1)}{(3x-1)(3x+1)^2}\)
\(=\frac{6x-2-9x^2-3x}{(3x+1)^2(3x-1)}=\frac{-9x^2+3x-2}{(3x-1)(3x+1)^2}\)
5) ĐK: \(x\neq \pm 1; \frac{-7\pm \sqrt{89}}{4}\)
\(\left(\frac{5}{x^2+2x+1}+\frac{2x}{x^2-1}\right): \frac{2x^2+7x-5}{3x-3}\)
\(=\left(\frac{5}{(x+1)^2}+\frac{2x}{(x-1)(x+1)}\right). \frac{3(x-1)}{2x^2+7x-5}\)
\(=\frac{5(x-1)+2x(x+1)}{(x-1)(x+1)^2}. \frac{3(x-1)}{2x^2+7x-5}=\frac{2x^2+7x-5}{(x+1)^2(x-1)}.\frac{3(x-1)}{2x^2+7x-5}\)
\(=\frac{3}{(x+1)^2}\)
a) Ta có: \(2x^4+3x^3-9x^2-3x+2\)
\(=2x^4-2x^3-2x^2+5x^3-5x^2-5x-2x^2+2x+2\)
\(=2x^2\left(x^2-x-1\right)+5x\left(x^2-x-1\right)-2\left(x^2-x-1\right)\)
\(=\left(x^2-x-1\right)\left(2x^2+5x-2\right)\)
\(x^2+6x+9=\left(x+3\right)^2\)
--
\(x^2-x+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2\)
--
\(x^3+12x^2+48x+64=\left(x+4\right)^3\)
1) \(\dfrac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)
\(=\dfrac{x^2+10x+25+x^2-10x+25}{x^2+25}\)
\(=\dfrac{2x^2+50}{x^2+25}\)
\(=\dfrac{2\left(x^2+25\right)}{x^2+25}=2\)
2) \(\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
\(=x^3+3^3-54-x^3\)
\(=27-54=-27\)
3) \(\left(2x+y\right)^2-\left(y+3x\right)^2\)
\(=4x^2+4xy+y^2-y^2-6xy-9x^2\)
\(=-5x^2-2xy\)
4) \(\left(2x+1\right)^3-\left(2x-1\right)^3-24x^2\)
\(=8x^3+12x^2+6x+1-8x^3+12x^2-6x+1-24x^2\)
\(=2\)
e)
$x^3+6x^2+12x+8=x^3+3.2.x^2+3.2^2.x+2^3=(x+2)^3$
f)
$a^3-2a^2-ab^2+2b^2=(a^3-ab^2)-(2a^2-2b^2)$
$=a(a^2-b^2)-2(a^2-b^2)=(a^2-b^2)(a-2)=(a-b)(a+b)(a-2)$
g)
$2a^2x-2a^2-2abx+4ab-2b^2=(2a^2x-2abx)-(2a^2-4ab+2b^2)$
$=2ax(a-b)-2(a-b)^2=2(a-b)(ax-a+b)$
h)
\(x^2-2xy+y^2-25=(x-y)^2-25=(x-y)^2-5^2=(x-y+5)(x-y-5)\)
a)
$4x^2-40x^4+100x^3=4x^2(1-10x^2+25x)$
b)
\(3xy(x-5)-7x+35=3xy(x-5)-7(x-5)\)
\(=(x-5)(3xy-7)\)
c)
\(a^2-am-b^2-bm=(a^2-b^2)-(am+bm)=(a-b)(a+b)-m(a+b)\)
\(=(a+b)(a-b-m)\)
d)
\(x^3-4x-x^2y+4y=(x^3-x^2y)-(4x-4y)\)
\(=x^2(x-y)-4(x-y)=(x^2-4)(x-y)=(x-2)(x+2)(x-y)\)
a: \(A=3\left(x^2-\dfrac{4}{3}x+\dfrac{7}{3}\right)\)
\(=3\left(x^2-2\cdot x\cdot\dfrac{2}{3}+\dfrac{4}{9}+\dfrac{17}{9}\right)\)
\(=3\left(x-\dfrac{2}{3}\right)^2+\dfrac{17}{3}>=\dfrac{17}{3}\)
Dấu '=' xảy ra khi x=2/3
b: \(=9x^2-6x+1+4x^2-20x+25-4\)
\(=13x^2-26x+22\)
\(=13\left(x^2-2x+\dfrac{22}{13}\right)\)
\(=13\left(x^2-2x+1+\dfrac{9}{13}\right)\)
\(=13\left(x-1\right)^2+9>=19\)
Dấu '=' xảy ra khi x=1