K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 1

Lời giải:

\(C=\frac{x+\sqrt{x}+17}{x+\sqrt{x}}=1+\frac{17}{x+\sqrt{x}}\)

Để $C$ nhỏ nhất thì $\frac{17}{x+\sqrt{x}$ nhỏ nhất

Tức là $x+\sqrt{x}$ lớn nhất với mọi $x\geq 0$

Khi $x\geq 0$ thì ta không thể tìm GTLN của $x+\sqrt{x}$ vì cứ cho $x$ tăng vô hạn thì $x+\sqrt{x}$ cũng tăng vô hạn.

Vì vậy biểu thức C không có min bạn nhé. Bạn cần bổ sung thêm điều kiện khác về $x$ để tìm.

16 tháng 4 2018

Ta co: x>= 2y => x- 2y >= 0 
M=x^2/xy+y^2/xy Dk xy khac 0 
M= x/y + y/x 
2M= 2x/y + 2y/x 
2M= 2.x/y + (-x +2y+x)/x 
2M= 2. (x-2y)/y + 2.2y/x - (x-2y)/x+x/x => 2M=2(x-2y)/y -(x-2y)/x +5 
Vi x-2y>=0=>2(x-2y)/y -(x-2y)/x +5>=5 
=> 2M>=5 
=> M>5/2 
vay GTNN cua M=5/2 

4 tháng 1 2019

\(Tacó\)

\(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\Leftrightarrow2x^2+2y^2\ge\left(x+y\right)^2=4\)

\(\Leftrightarrow x^2+y^2\ge2\Rightarrow S_{min}=2\)

Dấu "=" xảy ra khi: x=y=1

Vậy GTNN của S là 2. <=> x=y=1

Cauchy-Schwarz dạng Engel 

\(S=x^2+y^2\ge\frac{\left(x+y\right)^2}{1+1}=\frac{2^2}{2}=2\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1\)

... 

13 tháng 10 2019

Bạn ko cho biểu thức thì mk tính kiểu j??

18 tháng 8 2021

Q=x^2+4/x +4-4

   =x^2+4/x +4x/x -4

  =(x^2+4x+4)/x -4=(x+2)^2/x -4>=-4 với mọi x

Dấu = xảy ra khi và chỉ khi x+2=0=>x=2

 

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

Lời giải:

Để $A$ min thì $\sqrt{x}-2$ là số âm lớn nhất

Với $x$ chính phương thì $\sqrt{x}-2$ đạt giá trị âm lớn nhất bằng $-1$

$\Leftrightarrow x=1$

Khi đó: $A_{\min}=\frac{1}{-1}=-1$

Để $A$ max thì $\sqrt{x}-2$ là số dương nhỏ nhất.

Với $x$ chính phương thì $\sqrt{x}-2$ đạt giá trị dương nhỏ nhất bằng $1$

$\Leftrightarrow x=9$

Khi đó: $A=\frac{1}{1}=1$