Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co: x>= 2y => x- 2y >= 0
M=x^2/xy+y^2/xy Dk xy khac 0
M= x/y + y/x
2M= 2x/y + 2y/x
2M= 2.x/y + (-x +2y+x)/x
2M= 2. (x-2y)/y + 2.2y/x - (x-2y)/x+x/x => 2M=2(x-2y)/y -(x-2y)/x +5
Vi x-2y>=0=>2(x-2y)/y -(x-2y)/x +5>=5
=> 2M>=5
=> M>5/2
vay GTNN cua M=5/2
\(Tacó\)
\(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\Leftrightarrow2x^2+2y^2\ge\left(x+y\right)^2=4\)
\(\Leftrightarrow x^2+y^2\ge2\Rightarrow S_{min}=2\)
Dấu "=" xảy ra khi: x=y=1
Vậy GTNN của S là 2. <=> x=y=1
Cauchy-Schwarz dạng Engel
\(S=x^2+y^2\ge\frac{\left(x+y\right)^2}{1+1}=\frac{2^2}{2}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1\)
...
Q=x^2+4/x +4-4
=x^2+4/x +4x/x -4
=(x^2+4x+4)/x -4=(x+2)^2/x -4>=-4 với mọi x
Dấu = xảy ra khi và chỉ khi x+2=0=>x=2
Lời giải:
Để $A$ min thì $\sqrt{x}-2$ là số âm lớn nhất
Với $x$ chính phương thì $\sqrt{x}-2$ đạt giá trị âm lớn nhất bằng $-1$
$\Leftrightarrow x=1$
Khi đó: $A_{\min}=\frac{1}{-1}=-1$
Để $A$ max thì $\sqrt{x}-2$ là số dương nhỏ nhất.
Với $x$ chính phương thì $\sqrt{x}-2$ đạt giá trị dương nhỏ nhất bằng $1$
$\Leftrightarrow x=9$
Khi đó: $A=\frac{1}{1}=1$
Lời giải:
\(C=\frac{x+\sqrt{x}+17}{x+\sqrt{x}}=1+\frac{17}{x+\sqrt{x}}\)
Để $C$ nhỏ nhất thì $\frac{17}{x+\sqrt{x}$ nhỏ nhất
Tức là $x+\sqrt{x}$ lớn nhất với mọi $x\geq 0$
Khi $x\geq 0$ thì ta không thể tìm GTLN của $x+\sqrt{x}$ vì cứ cho $x$ tăng vô hạn thì $x+\sqrt{x}$ cũng tăng vô hạn.
Vì vậy biểu thức C không có min bạn nhé. Bạn cần bổ sung thêm điều kiện khác về $x$ để tìm.