Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:\(|2x-4|\ge0\forall x\)
\(\Rightarrow|2x-4|+13\ge13\forall x\)
hay A\(\ge13\forall x\)
Dấu "=" \(\Leftrightarrow|2x-4|=0\)
<=> 2x-4=0
<=> 2x=4
<=>x=2
Vậy Min A=13 đạt được khi x=2
b) Làm tương tự câu a)
c) \(C=\left(x-5\right)^2+25\)
Ta có: \(\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-5\right)^2+25\ge25\forall x\)
hay C \(\ge25\)
Dấu "=" <=> (x-5)2 =0
<=> x-5=0
<=> x=5
Vậy Min C=25 đạt được khi x=5
d) Làm tương tự c)
a) Vì \(\left|2x-4\right|\ge0\)
\(\Rightarrow\left|2x-4\right|+13\ge13\)
\(\Rightarrow A_{min} =13\)
b) Vì \(\hept{\begin{cases}\left|x+5\right|\ge0\\\left|2y-16\right|\ge0\end{cases}}\)
\(\Rightarrow\left|x+5\right|+\left|2y-16\right|+2015\ge0\)
\(\Rightarrow B_{min}=2015\)
Các phần sau làm tương tự như thế ^_^
Chúc bạn học tốt
Ta có:
\(\left(x-1\right)^2\ge0\)
\(\left(2y-5\right)^2\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left(2y-5\right)^2\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left(2y-5\right)^2+2015\ge2015\)
\(\Rightarrow A\ge2015\)
Dấu "=" xảy ra khi (x-1)2=0 => x-1=0 => x=1
(2y-5)2=0 => 2y-5=0 => y= 5/2
=> A nhỏ nhất bằng 2015 khi x=1 và y=5/2
a, Ta có: \(\left|x+2\right|\ge0\Rightarrow A=\left|x+2\right|+50\ge50\)
Dấu "=" xảy ra khi x=-2
Vậy GTNN của A=50 khi x=-2
b, Ta có: \(\left|x-100\right|\ge0;\left|y+200\right|\ge0\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\Rightarrow B=\left|x-100\right|+\left|y+200\right|-1\ge-1\)
Dấu "=" xảy ra khi x=100,y=-200
Vậy GTNN của B=-1 khi x=100,y=-200
c, Đặt C = 2015-|x+5|
Ta có: \(\left|x+5\right|\ge0\Rightarrow-\left|x+5\right|\le0\Rightarrow C=2015-\left|x+5\right|\le2015\)
Dấu "=" xảy ra khi x=-5
Vậy GTLN của C = 2015 khi x = -5
a, Ta có : (x-5)2 \(\ge\)0 với mọi x
=> (x-5)2 + 2016 \(\ge\) 2016
Dấu " = " xảy ra <=> (x-5)2=0
=> x-5=0
=> x=5
b, Ta có -(x+3)2 \(\le\)0
=> -(x+3)2 +2015 \(\le\)2015
Dấu " = " xảy ra <=> -(x+3)2 = 0
=> x+3 = 0
=> x = -3
nhớ k đúng cho mk nha!! :))
Tự học giúp bạn có được một gia tài
Jim Rohn – Triết lý cuộc đời
a,,A=|x-3|+1
Ta thấy:\(\left|x-3\right|\ge0\)
\(\Rightarrow\left|x-3\right|+1\ge0+1=1\)
\(\Rightarrow A\ge1\).Dấu = khi x=3
Vậy....
b)B=|6-2x|-5
Ta thấy:\(\left|6-2x\right|\ge0\)
\(\Rightarrow\left|6-2x\right|-5\ge0-5=-5\)
\(\Rightarrow B\ge-5\).Dấu = khi x=3
Vậy...
c) C=3-|x+1|
Ta thấy:\(-\left|x+1\right|\le0\)
\(\Rightarrow3-\left|x+1\right|\le3-0=3\)
\(\Rightarrow C\le3\).Dấu = khi x=-1
e) E= -(x+1)^2 -|2-y|+11
Ta thấy:\(\hept{\begin{cases}-\left(x+1\right)^2\\-\left|2-y\right|\end{cases}\le}0\)
\(\Rightarrow-\left(x+1\right)^2-\left|2-y\right|\le0\)
\(\Rightarrow-\left(x+1\right)^2-\left|2-y\right|+11\le0+11=11\)
\(\Rightarrow E\le11\).Dấu = khi x=-1 y=2
Vậy...
f)F= (x-1)^2+|2y+2|-3
Ta thấy:\(\hept{\begin{cases}\left(x-1\right)^2\\\left|2y+2\right|\end{cases}}\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left|2y+2\right|\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left|2y+2\right|-3\ge0-3=-3\)
\(\Rightarrow F\ge-3\).Dấu = khi x=1 y=-1
Vậy...
Ta có: I x+5 I >=0 với mọi x
I 2y-16 I >= 0 với mọi x
=> I x+5 I + I2y-16I+2015 >= 2015
=> B >= 2015
Dấu "=" <=> \(\hept{\begin{cases}x+5=0\\2y-16=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\2y=16\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-5\\y=8\end{cases}}}\)