K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CK
4
Các câu hỏi dưới đây có thể giống với câu hỏi trên
LC
2
M
1
6 tháng 2 2019
\(D=\left|2014-x\right|+\left|2013-x\right|+2015\)
\(\Rightarrow D=\left|2014-x\right|+\left|x-2103\right|+2015\)
Ta có \(\left|2014-x\right|+\left|x-2013\right|+2015\ge\left|2014-x+x-2013\right|+2015=2016\)
\(\Rightarrow D_{min}\Leftrightarrow\left(2014-x\right)\left(x-2013\right)\ge0\Leftrightarrow2013\le x\le2014\)
NT
0
KY
1
JM
2
TH
17 tháng 1 2017
/x-1/> hoặc = 0=> /x-1/=0 (1)
(x-y)^2> hoặc bằng 0 => (x-y)^2=0 (2)
từ (1) và (2) => A nhỏ nhất =2017
HV
0
Ta có:
|x−2015|+|x−2016|+|x−2017||x−2015|+|x−2016|+|x−2017|
=|x−2016|+|x−2015|+|x−2017|=|x−2016|+|x−2015|+|x−2017|
=|x−2016|+(|x−2015|+|x−2017|)=|x−2016|+(|x−2015|+|x−2017|)
∗)∗) Áp dụng BĐT |a|+|b|≥|a+b||a|+|b|≥|a+b| ta có:
|x−2015|+|x−2017|=|x−2015|+|x−2017|= |x−2015|+|2017−x||x−2015|+|2017−x|
≥|x−2015+2017−x|=|2|=2≥|x−2015+2017−x|=|2|=2
∗)∗) Dễ thấy: |x−2016|≥0∀x|x−2016|≥0∀x
⇔|x−2015|+|x−2016|+|x−2017|⇔|x−2015|+|x−2016|+|x−2017| ≥2≥2
Đẳng thức xảy ra ⇔⎧⎩⎨⎪⎪x−2015≥0x−2016=0x−2017≤0⇔⎧⎩⎨⎪⎪x≥2015x=2016x≤2017⇔{x−2015≥0x−2016=0x−2017≤0⇔{x≥2015x=2016x≤2017 ⇔x=2016⇔x=2016
Vậy GTNNGTNN của biểu thức là 2⇔x=2016
P= |x-2015|+|2016-x| +|x-2017|
=> P = |x-2015|+|x-2016| +|2017-x|
Ta có\(\left|x-2015\right|\ge x-2015\)(với mọi x)
\(\left|x-2016\right|\ge x-2016\)(với mọi x)
\(\left|x-2017\right|\ge x-2017\)(với mọi x)
\(\Rightarrow\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\ge x-2015+0+x-2017\)(với mọi x)
\(\Rightarrow P\ge2\)(với mọi x)
=> P đạt GTNN là 2 khi
\(\hept{\begin{cases}\left|x-2015\right|=0\\\left|x-2016\right|=0\\\left|x-2017\right|=0\end{cases}\hept{\begin{cases}x-2015\ge0\\x-2016=0\\x-2017\ge0\end{cases}\hept{\begin{cases}x\ge2015\\x=2016\\x\ge2017\end{cases}\Rightarrow}}x=2016}\)
Vậy GTNN của P là 2 tại x = 2016