K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2017

ta có \(P=\left|x+3\right|+\left|x-2\right|+\left|x-5\right|=\left|x+3\right|+\left|5-x\right|+\left|x-2\right|\)

Áp dụng tính chât dấu giá trị tuyệt đối ta có 

\(\left|x+3\right|+\left|5-x\right|\ge\left|x+3+5-x\right|=8\)

mà \(\left|x-2\right|\ge0\)

\(\Rightarrow P\ge8\)

dấu = xảy ra <=>\(\hept{\begin{cases}\left(x+3\right)\left(5-x\right)\ge0\\x-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x+3\right)\left(x-5\right)\ge0\\x=2\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}5\ge x\ge-3\\x=2\end{cases}}\)

<=> x=2

vậy Pmin =8 <=> x=2

10 tháng 4 2017

Lập bảng xét dấu rồi làm nha bạn.

10 tháng 4 2017

mk mới lớp 7 k giải đc toán 8 

3 tháng 12 2015

Ta có

T=/x-1/+/x-2/+/x-3/+/x-4/

=/x-1/+/2-x/+/x-3/+/4-x/

Áp dụng bất đẳng thức /A/+/B/ \(\ge\)/A+B/

=>T \(\ge\)/x-1+2-x+x-3+4-x/=/2/=2

nhớ tick mình nha

 

27 tháng 7 2019

\(a)\left|2x-5\right|=4\)\(\Rightarrow2x-5=\pm4\)

\(Với\)\(2x-5=4\Rightarrow2x=9\Rightarrow x=\frac{9}{2}\)

\(Với\)\(2x-5=-4\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)

\(Vậy\)\(x=\frac{9}{2};x=\frac{1}{2}\)

\(b)\left|2x-3\right|-\left|3x+2\right|=0\)

\(Vì\)\(\left|2x-3\right|\ge0;\left|3x+2\right|\ge0\)

\(\Rightarrow\hept{\begin{cases}2x-3=0\\3x+2=0\end{cases}\Rightarrow\hept{\begin{cases}2x=3\\3x=-2\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{2}\\x=\frac{-2}{3}\end{cases}}}\)

\(Vậy\)\(x=\frac{3}{2};x=\frac{-2}{3}\)

1 tháng 11 2017
Đơn giản hóa lx + -3l + -1lx + 2l = 5 Sắp xếp lại các điều khoản: -3l + 2l + lx + -1lx = 5 Kết hợp như các thuật ngữ: -3l + 2l = -1l -1l + lx + -1lx = 5 Kết hợp như các thuật ngữ: lx + -1lx = 0 -1l + 0 = 5 -1l = 5 Giải quyết -1l = 5 Giải quyết cho biến 'l'. Di chuyển tất cả các điều khoản có chứa l sang trái, tất cả các điều khoản khác ở bên phảiChia mỗi bên bằng '-1'. l = -5 Đơn giản hóa l = -5
1 tháng 11 2017

không chắc là đúng đâu

10 tháng 12 2016

Vì \(\left|x-2\right|\ge0\)

     \(\left|x-3\right|\ge0\)

     \(\left|x-6\right|\ge0\)

             Do đó:\(\left|x-2\right|+\left|x-3\right|+\left|x-6\right|\ge0\)

Dấu = xảy ra khi \(\hept{\begin{cases}x-2=0\\x-3=0\\x-6=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=2\\x=3\\x=6\end{cases}}\)

                               Vậy Min F(x)=0 khi x=2;3;6

10 tháng 12 2016

f(x)=|x-2|+|x-3|+|x-6| >= |2-x+x-6|=|-4|=4 (bđt |a|+|b| >= |a+b|)

dấu "=" xảy ra <=> (2-x)(x-6) >= 0 <=>2 <=x <= 6

27 tháng 7 2019

a, \(\left|2x-5\right|=4\)

\(\Rightarrow\orbr{\begin{cases}2x-5=4\\2x-5=-4\end{cases}\Rightarrow}\orbr{\begin{cases}2x=9\\2x=1\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{9}{2}\\x=\frac{1}{2}\end{cases}}\)

b, \(\left|2x-3\right|-\left|3x+2\right|=0\)

\(\Rightarrow\left|2x-3\right|=\left|3x+2\right|\)

\(\Rightarrow\orbr{\begin{cases}2x-3=3x+2\\2x-3=-3x-2\end{cases}\Rightarrow}\orbr{\begin{cases}-x=5\\5x=1\end{cases}\Rightarrow}\orbr{\begin{cases}x=-5\\x=\frac{1}{5}\end{cases}}\)

c, \(\left|x+3\right|-\left|3x+2\right|=x+2\)

Ta có: x + 3 = 0 => x = -3

           3x + 2 = 0 => x = -2/3

Lập bảng xét dấu: 

x x + 3 3x + 2 -2 3 -3 0 0 - + + - - +

Với x < -3

Ta có: -x - 3 + 3x + 2 = x + 2

<=> 2x - 1 = x + 2

<=> x = 3 ( ko t/mãn )

Với -3 ≤ x < -2/3

Ta có: x + 3 + 3x + 2 = x + 2

<=> 4x + 5 = x + 2

<=> 3x = -3

<=> x = -1 ( t/mãn )

Với -2/3 ≤ x 

Ta có: x + 3 - 3x - 2 = x + 2

<=> -2x + 1 = x + 2

<=> -3x = 1

<=> x = -1/3 ( t/mãn )

Vậy....

d, \(\left||x-1|-5\right|=x+5\)

Đk: x + 5 ≥ 0 => x ≥ -5

\(\Rightarrow\orbr{\begin{cases}\left|x-1\right|-5=x+5\\\left|x-1\right|-5=-x-5\end{cases}\Rightarrow\orbr{\begin{cases}\left|x-1\right|=x+25\\\left|x-1\right|=-x\left(Loai\right)\end{cases}}}\)

Giải \(\left|x-1\right|=x+25\)

\(\Rightarrow\orbr{\begin{cases}x-1=-x-25\\x-1=x+25\end{cases}\Rightarrow\orbr{\begin{cases}2x=-24\\0x=26\left(Loai\right)\end{cases}\Rightarrow x}=-12}\)( ko t/mãn )

Vậy x \(\in\varnothing\)

11 tháng 5 2015

a) +) Nếu x \(\ge\) 3 => |x - 2| = x - 2; |x - 3| = x - 3

=> P = x - 2 + x - 3 = 2x - 5 \(\ge\) 2.3 - 5 = 1

+) Nếu 2 < x < 3 => |x - 2| = x - 2 và |x - 3| = 3 - x 

=> P = x - 2 + 3 - x = 1

+) Nếu x \(\le\) 2 => |x - 2| =  2 - x; |x - 3| = 3 - x 

=> P = 2 - x + 3 - x = 5 - 2x \(\ge\) 5- 2.2 = 1

Kết hợp 3 trường hợp => P nhỏ nhất = 1 khi x = 2 hoặc x = 3

b) Q = x2 + 2.x. 3 +9 - 9 - 11 = (x + 3)2 - 20 \(\ge\) 0 - 20 = -20 với mọi x

=> Q nhỏ nhất bằng -20 khi x+ 3 = 0 => x = -3