K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(M=x^4-x^3-x^3+x^2+x^2-2x+1\)

\(=x^3\left(x-1\right)-x^2\left(x-1\right)+\left(x-1\right)^2\)

\(=\left(x-1\right)\left(x^3-x^2\right)+\left(x-1\right)^2\)

\(=\left(x-1\right)^2\cdot x^2+\left(x-1\right)^2=\left(x-1\right)^2\left(x^2+1\right)\)

\(\left(x-1\right)^2\ge0\)\(\forall x\)

\(x^2+1\ge1\)\(\forall x\)

Do đó: \(M>=1\)

Dấu = xảy ra khi x=0

15 tháng 10 2023

\(M=x^4-x^3-x^3+x^2+x^2-2x+1\)

\(=x^3\left(x-1\right)-x^2\left(x-1\right)+\left(x-1\right)^2\)

\(=x^2\left(x-1\right)^2+\left(x-1\right)^2\)

\(=\left(x^2+1\right)\left(x-1\right)^2\)

\(\left(x-1\right)^2>=0\forall x\)

\(x^2+1>=1\forall x\)

Do đó: \(\left(x-1\right)^2\cdot\left(x^2+1\right)>=0\forall x\)

Dấu = xảy ra khi x=1

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

30 tháng 6 2021

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

30 tháng 6 2021

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)

15 tháng 9 2023

\(x^4\)-2x\(^3\)+3x\(^2\)-2x+2

=(\(x^4\)-2x\(^3\)+x\(^2\))+(2x\(^2\)-2x)+2

=(x\(^2\)-x)\(^2\)+2(x\(^2\)-x)+2

=(x\(^2\)-x)\(^2\)+2(x\(^2\)-x)+1+1

=(x\(^2\)-x+1)\(^2\)+1

=[x\(^2\)-2.x.\(\dfrac{1}{2}\)+\(\left(\dfrac{1}{2}\right)^2\)+\(\dfrac{3}{4}\)]\(^2\)+1

=[(x-\(\dfrac{1}{2}\))\(^2\)+\(\dfrac{3}{4}\)]2+1

Ta có:(x-\(\dfrac{1}{2}\))\(^2\)\(\ge0\)

=>(x-\(\dfrac{1}{2}\))\(^2\)+\(\dfrac{3}{4}\)\(\ge\dfrac{3}{4}\)

=>[(x-\(\dfrac{1}{2}\))\(^2\)+\(\dfrac{3}{4}\)]2\(\ge\dfrac{9}{16}\)

=>[(x-\(\dfrac{1}{2}\))\(^2\)+\(\dfrac{3}{4}\)]2+1\(\ge\dfrac{9}{16}+1\)=\(\dfrac{25}{16}\)

Vậy Min F(x)=\(\dfrac{25}{16}\)khi x-\(\dfrac{1}{2}\)=0=>x=\(\dfrac{1}{2}\)

 

       
15 tháng 9 2023

thắc mắc j hỏi mik nha

4 tháng 9 2016

a/ \(M=x^2+y^2-x+6y+10=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+10-\frac{1}{4}-9\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Suy ra Min M = 3/4 <=> (x;y) = (1/2;-3)

b/

1/ \(A=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Suy ra Min A = 7 <=> x = 2

2/ \(B=x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Suy ra Min B = 1/4 <=> x = 1/2

3/ \(N=2x-2x^2-5=-2\left(x^2-x+\frac{1}{4}\right)-5+\frac{1}{2}=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\)

\(\ge-\frac{9}{2}\)

Suy ra Min N = -9/2 <=> x = 1/2

11 tháng 7 2016

Cho x2_60x+900=0

Suy ra:x2_2.x.30+302=0

(x-30)2=0

suy ra x-30=0

vậy x=30

10 tháng 12 2021

b: \(A=\dfrac{2-1}{3\cdot2}=\dfrac{1}{6}\)

24 tháng 11 2018

\(Q=\left(x^2\right)^2+2.x^2.x+x^2+2x^2+2x+1\)

\(=\left(x^2+x\right)^2+2\left(x^2+x\right)+1=\left(x^2+x+1\right)^2\)

Mà \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

\(\Rightarrow Q=\left(x^2+x+1\right)^2\ge\left(\frac{3}{4}\right)^2=\frac{9}{16}\)

Dấu "=" xảy ra khi: \(x+\frac{1}{2}=0\Rightarrow x=\frac{-1}{2}\)

Vậy GTNN của Q là \(\frac{9}{16}\) khi \(x=\frac{-1}{2}\)